접지된 전기 송신원을 이용한 일본 북동부 만다이 산에서의 시간영역 항공 전자탐사

Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Mount Bandai, north-eastern Japan

  • Mogi, Toru (Institute of Seismology and Volcanology, Hokkaido University) ;
  • Kusunoki, Ken'ichirou (Civil Engineering Research Laboratory, Central Research Institute of Electrical Power Industry) ;
  • Kaieda, Hideshi (Civil Engineering Research Laboratory, Central Research Institute of Electrical Power Industry) ;
  • Ito, Hisatoshi (Civil Engineering Research Laboratory, Central Research Institute of Electrical Power Industry) ;
  • Jomori, Akira (NeoScience Co.) ;
  • Jomori, Nobuhide (NeoScience Co.) ;
  • Yuuki, Youichi (Geotechnical Center, Oyo Co.)
  • 발행 : 2009.02.28

초록

항공전자탐사기법은 대규모의 접근이 불가능한 지역에 대한 탐사가 가능하여 화산구조를 조사하는데 유용한 탐사기법이나, 낮은 정밀도와 제한된 가탐심도의 단점을 가지고 있다. 접지된 전기송신원을 이용한 시간영역 항공 전자탐사 (GREATEM) 시스템은 항공 시간영역 전자탐사에서 가용한 탐사심도를 높이기 위한 목적으로 개발되었으며, 일본 북동부의 반다이 산 조사에 시험 적용하였다 반다이 산은 해발 1819 m의 안산암 층운화산이다. 1888년 7월에 일어난 화산분출은 북쪽 분화구에 발굽모양의 붕피 암벽과 기반부에 붕락 쇄설암을 남겼다. 이전의 연구 결과들은 반다이 산에서 실시된 GREATEM과 다른 지구물리 기법을 통해 밝혀진 반다이 산의 구조와 붕괴 메커니즘에 대한 자료의 비교분석을 가능하게 하였다. 최근의 화구구에서는 비저항 구조가, 붕괴된 분화구 지역에서는 전도성 구조가 발견되었다. 붕괴벽 주위의 전도성 구조는 열수의 작용으로 인한 변진대와 일치하고 있으며. 이러한 견과는 1888년 발생한 분출과 관련된 붕괴의 주된 원인이 화산체 내부를 구조적으로 약화시킨 열수변질작용과 관련 있다는 주장을 뒷받침하고 있다

Airborne electromagnetics (AEM) is a useful tool for investigating volcanic structures because it can survey large and inaccessible areas. Disadvantages include lower accuracy and limited depth of investigation. The Grounded Electrical Source Airborne Transient Electromagnetic(GREATEM)survey system was developed to increase the depth of investigation possible using AEM. The method was tested in a survey at Mount Bandai in north-eastern Japan. Mount Bandai is an andesitic stratovolcano that rises 1819m above sea level. An eruption in July 1888 left a hoof-shaped collapsed wall in its northern crater and avalanche debris at its base. Previous surveys of Mount Bandai allow for comparisons of data on its structure and collapse mechanism as obtained by GREATEM and other geophysical methods. The results show resistive structures in recent volcanic cones and conductive structures in the collapsed-crater area. Conductive areas around the collapsed wall correspond to an alteration zone resulting from hydrothermal activity, supporting the contention that a major cause of the collapse associated with the 1888 eruption was hydrothermal alteration that structurally weakened the interior of the volcanic edifice.

키워드

참고문헌

  1. Elliott, P., 1998, The principles and practice of FLAIRTEM: Explorat Geophysics, 29, 58–60. doi: 10.1071/EG998058
  2. Fraser, D. C., 1978, Resistivity mapping with an airborne multi-coil electromagnetic system: Geophysics, 43, 144–172. doi: 10.1190/ 1.1440817
  3. Geographical Survey Institute, 1993, 1 : 15000 Geomorphological map of Bandai Volcano, the 1888 eruption and debris avalanche
  4. Goldstein, M. A., and Strangway, D. W., 1975, Audio-frequencymagnetotellurics with grounded electric dipole source: Geophysics, 40,669–683. doi: 10.1190/1.1440558
  5. H\ddot{o}rdt, A., and M\ddot{u}ller, M., 2000, Understanding LOTEM data from mountainous terrain: Geophysics, 65, 1113–1123. doi: 10.1190/1.1444804
  6. Inoue, J., Kawakmi, N., Takasugi, S., Tanaka, K., and Takeuchi, M., 1995,Resistivity Structure beneath the Bandai Volcano by the MagnetotelluricSoundings, National Research Institute of Earth Science and DisasterPrevention, Ed., Bandai Volcano – Recent Progresson Hazard Prevention,pp. 31–41. (in Japanese)
  7. Ito, H., Kaieda, H., Kususnoki, K., Mogi, T., Tanaka, Y., Fujimitsu, Y., and Yuuki, Y., 2007, Development of an integrated airborne geophysical survey system using helicopter – Improvement of airborne survey methods of electromagnetic, magnetic, gamma-ray spectrometry and infrared image: Research Report of Central Research Institute of Electrical Power Industry, N06011, 21. [in Japanese with English abstract]
  8. Mitsuhata, Y., Uchida, T., and Amano, H., 2002, 2.5-D inversion of frequency-domain electromagnetic data generated by a grounded-wire source: Geophysics, 67, 1753–1768. doi: 10.1190/1.1527076
  9. Mogi, T., Tanaka, Y., Kusunoki, K., Morikawa, T., and Jomori, A., 1998, Development of grounded electrical source airborne transient EM (GREATEM): Exploration Geophysics, 29, 61–64. doi: 10.1071/EG998061
  10. Mohri, K., Uchiyama, T., Shen, L. P., Cai, C. M., Panina, L. V., Honkura, Y.,and Yamamoto, M., 2002, Amorphous wire and CMOS IC-based sensitive micromagnetic sensors utilizing magnetoimpedance (MI) and stress-impedance (SI) effects: IEEE Transactions on Magnetics, 38, 3063–3068. doi: 10.1109/TMAG.2002.802438
  11. Nishimura, T., Ueki, S., Yamawaki, T., Tanaka, S., Hashino, H., Sato, M., Nakamichi, H., and Hamaguchi, H., 2003, Broadband seismic signals associated with the 2000 volcanic unrest of Mount Bandai, northeasternJapan: Journal of Volcanology and Geothermal Research, 119, 51–59. doi: 10.1016/S0377-0273(02)00305-0
  12. NRIESDP (National Research Institute of Earth Science and Disaster Prevention), Ed., 1995, Bandai Volcano – Recent Progress on Hazard Prevention, pp. 241. (in Japanese)
  13. Sasaki, Y., and Nakazato, H., 2003, Topographic effects in frequency-domainhelicopter-borne electromagnetics: Exploration Geophysics, 34, 24–28. doi: 10.1071/EG03024
  14. Shimozuru, D., 1988, Brief Outline of Bandaisan, In Tokyo Geographical Society, Ed., Bandai-san – Centenary of the 1888 eruption of Bandaisan –, Journal of Geography, 97, 243–255. (in Japanese with English figure captions) https://doi.org/10.5026/jgeography.97.4_243
  15. Smith, R. S., Annan, A. P., and McGowan, P. D., 2001,A comparison of datafrom airborne, semi-airborne and ground electromagnetic systems: Geophysics, 66, 1379–1385. doi: 10.1190/1.1487084
  16. Strack, K.-M., 1992, Exploration with Deep Transient Electromagnetics, Elsevier, pp. 373
  17. Takeuchi, M., Nakazato, H., Mori, M., Fujisaki, O., Kim, H. J., Furuya, T., Ogura, C., and Okuyama, T., 1995, Dipole–Dipole Electrical Resistivity Survey in Bandai Volcano, National Research Institute of Earth Science and Disaster Prevention, Ed., Bandai Volcano – Recent Progress on Hazard Prevention, pp. 21–30. (in Japanese)
  18. Tanahashi, M., Morikawa, T., Kusakabe, K., Yoshikawa, H., Tanaka, K., Inokuchi, T., and Takeuchi, M., 1995, Airborne Electromagnetic Investigation in the Bandai Volcano Area – The Relation Between the 1888 Debris Avalanche and Low Resistivity Zone –, National Research Institute of Earth Science and Disaster Prevention, Ed., Bandai Volcano – Recent Progress on Hazard Prevention, pp. 1–9. (in Japanese)
  19. Tanaka, K., Mimura, K., Endo, H., and Inokuchi, T., 1995, Slip Surface and Boring of Catastrophic Rockslide Avalanche at Mount Bandai in 1888, National Research Institute of Earth Science and Disaster Prevention Ed., Bandai Volcano – Recent Progress on Hazard Prevention, pp. 69–78. (in Japanese)
  20. Tokyo Geographical Society, Ed., 1988, Bandai-san – Centenary of the 1888eruption of Bandai-san –, Journal of Geography, 97, 243–407. (in Japanese) https://doi.org/10.5026/jgeography.97.4_243
  21. Yamamoto, T., Nakamura, Y., and Glicken, H., 1999, Pyroclastic density current from the 1888 phreatic eruption of Bandai volcano, NE Japan: Journal of Volcanology and Geothermal Research, 90, 191–207. doi: 10.1016/S0377-0273(99)00025-6
  22. Yamawaki, T., Tanaka, S., Ueki, S., Hamaguchi, H., and Nakamichi, H., et al.2004, Three-dimensional P-wave velocity structure of Bandai volcano innortheastern Japan inferred from active seismic survey: Journal of Volcanology and Geothermal Research, 138, 267–282. doi: 10.1016/j.jvolgeores.2004.07.010