DOI QR코드

DOI QR Code

A Study on the Preparation and Application of Au/TiO2 Nanofiber from AAO Template

AAO Template를 이용한 Au/TiO2 나노섬유 제조 및 응용에 관한 연구

  • Eom, Seon-Mi (The Specialized Graduate School of Hydrogen & Fuel Cell, Yonsei University) ;
  • Park, Sang-Sun (Department of Chemical Engineering, Yonsei University) ;
  • Kim, Young-Deok (Department of Chemical Engineering, Yonsei University) ;
  • Kim, Yong-Rok (Department of chemistry, College of Science, Yonsei University) ;
  • Shul, Yong-Gun (The Specialized Graduate School of Hydrogen & Fuel Cell, Yonsei University)
  • 엄선미 (연세대학교 특성화대학원 수소연료전지 협동과정) ;
  • 박상선 (연세대학교 화학공학과) ;
  • 김영덕 (연세대학교 화학공학과) ;
  • 김용록 (연세대학교 화학과) ;
  • 설용건 (연세대학교 특성화대학원 수소연료전지 협동과정)
  • Published : 2009.02.28

Abstract

In this study, highly ordered AAO (Anodic Aluminum Oxide) with nanopores was prepared by commercial grade Al substrate containing 3.5 wt.% impurities through two step anodizing method. Nanopores of prepared AAO arrays were used as templates for preparing nanofiber. $TiO_2$ was deposited by using DP (deposition-precipitation) method into AAO pores to grow nanofiber. Au particles were loaded on this $TiO_2$ nanofiber which was grown vertically. Prepared 2 wt.% $Au/TiO_2$ nanofiber was characterized by XRD, SEM and Raman. The crystal structure was analyzed by the XRD. SEM was used to observe pore size and pore wall thickness. Photocatalytic activity of co-oxidation was compared with $TiO_2$ and $Au/TiO_2$ nanofiber on AAO arrays.

본 연구에서는 불순물이 포함된 Al 기판으로부터 두 단계의 양극산화 (anodization) 법에 의해 균일한 나노기공을 갖는 AAO(Anodic Aluminum Oxide)을 제조하였다. 생성된 AAO템플릿 위에 Deposition-Precipitation(DP)방법을 사용하여 수직으로 형성된 $TiO_2$ 나노섬유에 Au를 첨가시켜 2 wt.% $Au/TiO_2$ 나노섬유룰 제조하였다. 두 단계의 양극산화를 통해 규칙적으로 배열된 AAO 기공 형상과 기판 위에 수직으로 배향된 $TiO_2$ 나노섬유의 형상을 SEM을 통해 확인하였다. 또한 $Au/TiO_2$ 나노섬유의 특성은 XRD와 Raman 분석을 통하여 $TiO_2$의 아나타제(anatase)와 루타일(rutile) 결정구조와 $TiO_2$ 나노섬유에 담지된 Au의 존재를 확인하였다. 또한 일산화탄소(CO) 산화반응을 통해 AAO(Anodic Aluminum Oxide)기판 위에 형성된 $TiO_2$와 2 wt% $Au/TiO_2$ 나노섬유의 광촉매적 활성을 비교하였다.

Keywords

References

  1. X. Wang and G. Han, Microelectronic Engineering 66 (2003) 166 https://doi.org/10.1016/S0167-9317(03)00042-X
  2. G. D. Bengough and J. M. Stuat, Brit. Patent 223, 994 (1923)
  3. H. Masuda and K. Fukuda, Science, 268 (1995) 1466 https://doi.org/10.1126/science.268.5216.1466
  4. P. C. Searson and T. P. Morffat, Crit. Rev, Surf. Chem., 3 (1994) 171
  5. J. H. Yuan, F. Y. He, D. C. Sun, and X. H. Xia, Chem. Mater. 16 (2004) 1841 https://doi.org/10.1021/cm049971u
  6. H. Masuda, F. Hasegawa, and S. Ono, J. Electrochem. Soc. 144 (1997) 127 https://doi.org/10.1149/1.1837634
  7. A. Cru, and A. Frennet, Elsevier, Amsterdam, 30 (1987) 395
  8. M. Ueda and M. Haruta, Appl. Catal. B 18 (1998) 115 https://doi.org/10.1016/S0926-3373(98)00026-5
  9. J. B Goodenough et. al., J. Electroanal. Chem., 240 133 (1988)
  10. K. Mallick and M. S. Scurrell / Applied Catalysis A: General 253 (2003) 527-536 https://doi.org/10.1016/S0926-860X(03)00552-0
  11. K. Porkodi, K. Vasanth Kumar, Applied Catalysis B: Environmental 79 (2008) 108-109 https://doi.org/10.1016/j.apcatb.2007.09.041
  12. V. Iliev, D. Tomova, L. Bilyarska, A. Eliyas, and L. Petrov, Appl. Catal. B:Environ. 63 (2006) 266 https://doi.org/10.1016/j.apcatb.2005.10.014
  13. H. -J. Kim, M. -K. Han, S. -M. Lee, D. -K. Hwang, and Y. -G. Shul, Top. Catal., 47 (2008) 109 https://doi.org/10.1007/s11244-007-9020-9