DOI QR코드

DOI QR Code

Transport Behaviour of Electroactive Species in Ionic Compounds: A Focus on Li Diffusion through Transition Metal Oxide in Current Flowing Condition

  • Lee, Sung-Jai (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Pyun, Su-Il (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • 발행 : 2009.02.28

초록

This article reviewed transport behaviours of electroactive species in ionic compounds, focusing on chemical diffusion of Li through the transition metal oxide in a current flowing condition. For this purpose, a distinction has been first briefly made between migration and diffusion with respect to current, driving force and charge of electroactive species considered. Then, the equations for chemical diffusion are derived theoretically in open-circuit and current flowing conditions. Finally, the experimental methods such as ac impedance spectroscopy and current (potential) transient techniques are described in details for characterising chemical diffusion. In addition, the role of the thermodynamic enhancement factor in chemical diffusion is discussed.

키워드

참고문헌

  1. L. Onsager and S. Machlup, 'Fluctuations and Irreversible Processes', Phys. Rev., 91, 1505 (1953) https://doi.org/10.1103/PhysRev.91.1505
  2. S. Machlup and L. Onsager, 'Fluctuations and Irreversible Processes. II. Systems with Kinetic Energy', Phys. Rev., 91, 1512 (1953) https://doi.org/10.1103/PhysRev.91.1512
  3. T. Z. Fahidy and S. Mohanta, 'Mass transport in electrochemical systems' in Advances in transport processes, 84-92, ed. A.S. Mujumdar and R.A. Mashelkar, John Wiley & Sons, New York (1980)
  4. A. J. Bard and L. R. Faulkner, 'Electrochemical methods', 28-35, John Wiley & Sons, New York (1980)
  5. W. Weppner, 'Electrode Performance', in Solid State Electrochemistry, 199-228, ed. P.G. Bruce, Cambridge Univ. Press, Cambridge (1995)
  6. S. -I. Pyun, 'What Do We Understand by Chemical and Component Diffusivities of Cation in Mixed Conductor? - Basic Concepts and Electrochemical Techniques to Their Determination at Cathode Materials of Secondary Lithium Battery', J. Corr. Sci. of Korea, 28, 1 (1999)
  7. F. A. Kroeger, 'The Chemistry of Imperfect Crystals', 794-813, North-Holland Publishing Company, Amsterdam (1964)
  8. S. R. De Groot and P. Mazur, 'Non-Equilibrium Thermodynamics', 238-273, North-Holland Publishing Company, Amsterdam (1969)
  9. H. Schmalzried, 'Solid State Reactions', in Monographs in Modern Chemistry, 59-91, ed. H.F. Ebel, Verlag Chemie, Weinheim (1981)
  10. H. Schmalzried, 'Chemical Kinetics of Solids', 95-107, VCH Verlagsgesellschaft mbH, Weinheim (1995)
  11. W. Van. Gool, 'Principles of defect chemistry of crystalline solids', 13-25, Academic Press, New York (1966)
  12. G. Balducci, J. Kaspar, P. Fornasiero, M. Graziani, M. S. Islam, and J. D. Gale, 'Computer simulation studies of bulk reduction and oxygen migration in $CeO_{2}-ZrO_{2}$ solid solutions', J. Phys. Chem. B, 101, 1705 (1997) https://doi.org/10.1021/jp962530g
  13. M. Kilo, R. A. Jackson, and G. Borchardt, 'Computer modelling of ion migration in zirconia', Phil. Mag., 83, 3309 (2003) https://doi.org/10.1080/14786430310001605001
  14. P. -W. Li, L. Schaefer, and M. K. Chyu, 'Multiple transport processes in solid oxide fuel cells' in Transport phenomena in fuel cells, 1-42, ed. B. Sunden and M. Faghri, WIT Press, Boston (2005)
  15. J. -S. Kim, S. -I. Pyun, J. -W. Lee, and R. -H. Song, 'Kinetics of oxygen reduction on porous mixed conducting $(La_{0.85}Sr_{0.15})_{0.9}$$MnO_{3}$ electrode by ac-impedance analysis', J. Solid State Electrochem., 11, 117 (2007) https://doi.org/10.1007/s10008-005-0080-0
  16. J. -S. Kim, and S. -I. Pyun, 'Effects of secondary phase and thickness on mixed controlled oxygen reduction at dense composite electrode', J. Electrochem. Soc., 155, B8 (2008) https://doi.org/10.1149/1.2799084
  17. J. -S. Kim, S. -I. Pyun, H. -C. Shin, and S. -J. L. Kang, 'Oxygen reduction kinetics at dense $(La_{0.85}Sr_{0.15})_{0.9}$$MnO_{3}$ -YSZ composite electrodes investigated using potentiostatic current transient method', J. Electrochem. Soc., 155, B762 (2008) https://doi.org/10.1149/1.2926509
  18. J. -S. Kim and S. -I. Pyun, 'Kinetics of oxygen reduction at composite electrodes with controlled three-phase boundaries by patterning YSZ column', Electrochim. Acta, 54, 952 (2009) https://doi.org/10.1016/j.electacta.2008.08.037
  19. J. -S. Kim, S. -I. Pyun, and H. -C. Shin, 'Kinetics of cathodic reaction at porous composite electrode under mixed control of migration and oxygen-exchange', J. Electrochem. Soc., submitted for publication (2009)
  20. A. Kumar, D. Rajdev, and D.L. Douglass, 'Effect of oxide defect structure on the electrical properties of $ZrO_{2}$', J. Amer. Ceram. Soc., 55, 439 (1972) https://doi.org/10.1111/j.1151-2916.1972.tb11336.x
  21. S. -I. Pyun and Y. -E. Ihm, 'Electrical conduction of partially stabilized zirconia $Zr_{0.94}Ca_{0.06}O_{1.94}$ as a function of temperature and oxygen partial pressure', J. Mat. Sci., 17, 2577 (1982) https://doi.org/10.1007/BF00543890
  22. R. J. Chater, S. Carter, J. A. Kilner, and B. C. H. Steele, 'Development of a novel SIMS technique for oxygen self-diffusion and surface exchange coefficient measurements in oxides of high diffusivity', Solid State Ionics, 53-56, 859 (1992) https://doi.org/10.1016/0167-2738(92)90266-R
  23. S. -J. Lee, S. -I. Pyun, and H. -C. Shin, 'Chemical diffusion of electroactive species in ionic compounds: a focus on chemical equilibrium constraint', J. Solid State Electrochem., in press (2009)
  24. T. -W. Tang, T. O. Regan, and B. Wu, 'Thomas-Fermi approximation for a two-dimensional electron gas at low temperatures', J. Appl. Phys., 95, 7990 (2004) https://doi.org/10.1063/1.1739292
  25. D. N. Quang, L. Tuan, and N.T. Tien, 'Electron mobility in Gaussian heavily doped ZnO surface quantum wells', Phys. Rev. B, 77, 125326 (2008) https://doi.org/10.1103/PhysRevB.77.125326
  26. Y.-M. Choi, S.-I. Pyun and S.-I. Moon, 'Effects of cation mixing on the electrochemical lithium intercalation reaction into porous $Li_{1-d}Ni_{1-y}Co_{y}O_{2}$ electrodes', Solid State Ionics, 89, 43 (1996) https://doi.org/10.1016/0167-2738(96)00269-X
  27. S. -I. Pyun, Y. -M. Choi, and I. -D. Jeng, 'Effect of the lithium content on electrochemical lithium intercalation into amorphous and crystalline powdered $Li_{1{\pm}\delta}Mn_{2}O_{4}$ electrodes prepared by sol-gel method', J. Power Sources, 68, 593 (1997) https://doi.org/10.1016/S0378-7753(96)02635-3
  28. S. -I. Pyun and J. -S. Bae, 'Electrochemical lithium intercalation into vanadium pentoxide xerogel film electrode', J. Power Sources, 68, 669 (1997) https://doi.org/10.1016/S0378-7753(96)02639-0
  29. H. -C. Shin and S. -I. Pyun, 'Investigation of lithium transport through lithium cobalt dioxide thin film sputter-deposited by analysis of cyclic voltammogram', Electrochim. Acta, 46, 2477 (2001) https://doi.org/10.1016/S0013-4686(01)00457-1
  30. J. -S. Bae and S. -I. Pyun, 'Electrochemical lithium intercalation reaction of anodic vanadium oxide film', J. Alloys & Comp., 217, 52 (1995) https://doi.org/10.1016/0925-8388(94)01288-S
  31. Y. -M. Choi, S. -I. Pyun, J. -S. Bae, and S. -I. Moon, 'Effects of lithium content on the electrochemical lithium intercalation reaction into $LiNiO_{2}$ and $LiNiO_{2}$ electrodes', J. Power Sources, 56, 25 (1995) https://doi.org/10.1016/0378-7753(95)80004-Z
  32. Y. -M. Choi and S. -I. Pyun, 'Determination of electrochemical active area of porous $Li_{1-\delta}CoO_{2}$ electrode using the GITT technique', Solid State Ionics, 109, 159 (1998) https://doi.org/10.1016/S0167-2738(98)00098-8
  33. S. -W. Kim and S. -I. Pyun, 'Thermodynamic and kinetic approaches to lithium intercalation into a $Li_{1-\delta}Mn_{2}O_{4}$ electrode using Monte Carlo simulation', Electrochim. Acta, 46, 987 (2001) https://doi.org/10.1016/S0013-4686(00)00687-3
  34. J. -S. Bae and S. -I. Pyun, 'Electrochemical lithium intercalation into and deintercalation from vanadium oxide electrode by using potentiostatic current transient technique', Solid State Ionics, 90, 251 (1996) https://doi.org/10.1016/S0167-2738(96)00378-5
  35. S. -I. Pyun and Y. -M. Choi, 'Electrochemical lithium intercalation into and de-intercalation from porous $LiCoO_{2}$ electrode by using potentiostatic current transient technique', J. Power Sources, 68, 524 (1997) https://doi.org/10.1016/S0378-7753(96)02631-6
  36. Y. -M. Choi, S. -I. Pyun, S. -I. Moon, and Y. -E. Hyung, 'A study of the electrochemical lithium intercalation behavior of porous $LiNiO_{2}$ electrodes by solid-state reaction and sol-gel methods', J. Power Sources, 72, 83 (1998) https://doi.org/10.1016/S0378-7753(97)02677-3