DOI QR코드

DOI QR Code

Comparison of Metabolic Fingerprintings between Biofilm and Aeration Tanks of RABC System for Food Wastewater Treatment

식품폐수처리 RABC system의 생물막과 포기조 대사지문 비교

  • Lee, Dong-Geun (Department of Pharmaceutical Engineering, Silla University) ;
  • Yoo, Ki-Hwan (Department of Pharmaceutical Engineering, Silla University) ;
  • Sung, Gi-Moon (Department of Pharmaceutical Engineering, Silla University) ;
  • Park, Seong-Joo (Department of Microbiology, Graduate School, Daejon University) ;
  • Lee, Jae-Hwa (Department of Pharmaceutical Engineering, Silla University) ;
  • Ha, Bae-Jin (Department of Pharmaceutical Engineering, Silla University) ;
  • Ha, Jong-Myung (Department of Pharmaceutical Engineering, Silla University) ;
  • Lee, Sang-Hyeon (Department of Pharmaceutical Engineering, Silla University)
  • Published : 2009.03.31

Abstract

Metabolic fingerprinting of microbial communities was investigated with Biolog GN2 plates using samples of biofilm and aeration tanks from an RABC (rotating activated Bacillus contactor) system - an advanced wastewater treatment system for the food wastewater of pig slaughterhouses. Aerobic and anaerobic results revealed the following four aspects. First, simple matching and pairs t-test of daily variation showed more defined qualitative and quantitative relatedness of active microbial communities than that of mere optical densities. Second, metabolic potentials were higher in biofilm than in aeration tanks (p<0.01), meaning higher activity of biofilm. Third, two aeration tanks showed the highest similarity (78%) and similar metabolic power (p=0.287). However, actively used carbon sources were different among samples, signifying change of active communities at each wastewater treatment step. Finally, aerobic and anaerobic metabolic fingerprinting patterns were different for the same samples representing activities of microaerophilic and/or anaerobic communities. These results suggest that daily variation and anaerobic incubation would help in the comparison of metabolic fingerprintings.

돈 도축 식품폐수를 처리하는 생물막 시스템인 RABC (rotating activated Bacillus contactor) 공정의 생물막과 점감식으로 운영되는 포기조의 동일한 시료를 대상으로 Biolog GN2 plate를 이용한 호기/혐기 대사지문 분석으로 다음과 같은 결과를 얻었다. 첫째 대응표본 상관관계 분석과 pairs t-test를 통하여 매일 측정값보다 일별변화량이 전반적인 군집구조의 유사성을 나타내는 것으로 판단되었다. 둘째 생물막이 포기조 시료들에 비해 높은 탄소원 이용도를 보여(p<0.01) 생물막의 높은 유기물 제거 능력을 알 수 있었고 포기조 시료사이는 이용된 탄소원의 상관관계가 높았고(78%) 활성정도도 비슷하였다(p=0.287). 셋째 활발하게 이용된 탄소원의 종류는 시료별로 차이를 보여 활성을 보이는 군집이 각 처리단계 별로 변화하는 것으로 판단되었다. 마지막으로 같은 시료라도 호기/혐기 조건에 따라 대사지문에 차이를 보여 미호기성 및 혐기성 군집구성원에 의한 활성 차이를 확인하였다. 향후 대사지문(metabolic fingerprinting)을 통한 활성군집 비교에 일별변화량과 혐기조건 분석을 병행하면 더욱 풍부한 분석이 가능할 것이다.

Keywords

References

  1. Anderson, S. A., C. H. Sissons, M. J. Coleman, and L. Wong. 2002. Application of carbon source utilization patterns to measure the metabolic similarity of complex dental plaque biofilm microcosms. Appl. Environ. Microbiol. 68, 5779-5783 https://doi.org/10.1128/AEM.68.11.5779-5783.2002
  2. Choi, D. B., C.-B. Lee, and W.-S. Cha. 2005. Optimization for phosphorus removal by loess ball using Chromobacterium. J. Life Sci. 15, 584-589 https://doi.org/10.5352/JLS.2005.15.4.584
  3. Garland, J. L. and A. L. Millis. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community level sole carbon source utilization. Appl. Environ. Microbiol. 57, 2311-2359
  4. Gamo, M. and T. Shoji. 1999. A method of profiling microbial communities based on a most-probable-number assay that uses BIOLOG plates and multiple sole carbon sources. Appl. Environ. Microbiol. 65, 4419-4424
  5. Kim, E. H., Y. J. Jo, S. J. Park, G. S. Sin, S. B. Im, and J. G. Jeong. 2004. Advanced wastewater treatment process using rotating activated Bacillus contactor (RABC). J. Korean Soc. Wat. Qual. 20, 190-195
  6. Lee, D.-G., J.-H. Lee, S.-H. Lee, B. J. Ha, and J.-M. Ha. 2006. Efficiency of different disinfectants against biofilm on carbon steel pipe and carbon utilizing ability of biofilm. J. Life Sci. 16, 579-583 https://doi.org/10.5352/JLS.2006.16.4.579
  7. Mojica, K., D. Elseya, and M. J. Cooney. 2007. Quantitative analysis of biofilm EPS uronic acid content. J. Microbiol. Methods 71, 61-65 https://doi.org/10.1016/j.mimet.2007.07.010
  8. Park, S. J., J. C. Yoon, K.-S. Shin, E. H. Kim, S. Yim, Y.-C. Cho, G. M. Sung, D.-G. Lee, S. B. Kim, D.-U. Lee, S.-H. Woo, and B. Koopman. 2007. Dominance of endospore- forming bacteria on a rotating activated Bacillus contactor biofilm for advanced wastewater treatment. J. Microbiol. 45, 113-121
  9. Puigaguta, J., H. Salvadó, D. García, F. Granesc, and J. García. 2007. Comparison of microfauna communities in full scale subsurface flow constructed wetlands used as secondary and tertiary treatment. Wat. Res. 41, 1645-1652 https://doi.org/10.1016/j.watres.2007.01.036
  10. R$\"{}$ling, W. F. M., B. M. van Breukelen, M. Braster, M. T. Goeltom, J. Groen, and H. W. van Verseveld. 2000. Analysis of microbial communities in a landfill leachate polluted aquifer using a new method for anaerobic physiological profiling and 16S rDNA based fingerprinting. Microb. Ecol. 40, 177-188
  11. Ros, M., M. Goberna, J. A. Pascual, S. Klammer, and H. Insam. 2008. 16S rDNA analysis reveals low microbial diversity in community level physiological profile assays. J. Microbiol. Methods 72, 221-226 https://doi.org/10.1016/j.mimet.2008.01.003
  12. Shishidoa, M., S. Kazunori, H. Yokoyama, N. Mommaa, and S. Miyashita. 2008. Changes in microbial communities in an apple orchard and its adjacent bush soil in response to season, land-use, and violet root rot infestation. Soil Biol. Biochem. 40, 1460-1473 https://doi.org/10.1016/j.soilbio.2007.12.024
  13. Viti, C. and L. Giovannetti. 2005. Characterization of cultivable heterotrophic bacterial communities in Cr-polluted and unpolluted soils using Biolog and ARDRA approaches. Appl. Soil Ecol. 28, 101-112 https://doi.org/10.1016/j.apsoil.2004.07.008
  14. Weber, K. P., J. A. Grove, M. Gehder, W. A. Anderson, and R. L. Legge. 2007. Data transformations in the analysis of community-level substrate utilization data from microplates. J. Microbiol. Methods 69, 461-469 https://doi.org/10.1016/j.mimet.2007.02.013