균일한 열유속을 갖는 가열된 평판에 부착된 발포알루미늄에 대한 원형 충돌제트의 열유동 특성

Heat Flow of Round Jet Impinging Aluminum Foam Mounted on the Heated Plate with Constant Heat Flux

  • Han, Young-Hee (School of Mechanical Engineering, Chungbuk National University) ;
  • Lee, Kye-Bock (School of Mechanical Engineering, Chungbuk National University) ;
  • Lee, Chung-Gu (School of Mechanical Engineering, Chungbuk National University)
  • 발행 : 2009.06.30

초록

균일한 열유속을 갖는 가열된 평판에 부착된 발포 알루미늄에 대한 충돌제트의 열유동 특성에 대한 실험적 연구가 수행되었다. 열전달 특성에 대한 기공도, 다공성 물질의 두께, Reynolds 수의 영향이 고찰되었다. 실험결과 가열평판에 부착된 발포 알루미늄에 의해 열전달의 증가를 얻을 수 있었고 다공성 물질의 삽입에 의한 열전달 증가는 열전달 표면적의 증가와 압력 손실에 의한 운동량 감소에 의해 영향을 받는 것을 확인하였다.

An experimental study of jet impingement on aluminum foam mounted on the surface with constant heat flux is conducted with the presentation of the heat transfer rate measured when jet impinges normally to a flat plate. Effects of pore density, foam thickness and Reynolds number on the heat transfer are analyzed. Experimental results show that the significant enhancement in Nu is obtained when the aluminum foam is mounted on the heated plate and that the increase in the heat transfer due to the porous material insertion is dominated by both the increase in the heat transfer area and the decrease in the momentum flux resulted from the pressure drop.

키워드

참고문헌

  1. Khan Ali, M. N., Hirata, M., Kasagi, N., Nishiwaki, N., "Heat Transfer Augmentation in an Axisymmetric Impinging Jet", Seventh Int. Heat Transfer Conf., 363-368, (1982)
  2. Ichimiya, K., "Heat Transfer and Flow Characteristics of an Oblique Turbulent Impinging Jet Within Confined Walls", ASME J. Heat Transfer, 117, 316-322. (1995) https://doi.org/10.1115/1.2822523
  3. Lee, D. H., Chung, Y. S., Kim, M. G., "Technical Note Turbulent Heat Transfer from a Convex Hemispherical Surface to a Round Impinging Jet", Int. J. of Heat and Mass Transfer, 42, 1147-1156, (1999) https://doi.org/10.1016/S0017-9310(98)00174-4
  4. Hwang, J. J., Hwang, G. J., Yeh, R. H., Chao C. H., "Measurement of Interstitial Convective Heat Transfer and Frictional Drag for Flow Across Metal Foams", Journal of Heat Transfer, 124, 120-129, (2002) https://doi.org/10.1115/1.1416690
  5. Lage, J. L., Antohe, B. V., Nield, J. A., "Two Types of Nonlinear Pressure-drop versus Flow-rate Relation Observed for Saturated Porous Media", Journal of Fluids Engineering, 119, 700-706, (1997) https://doi.org/10.1115/1.2819301
  6. Vafai, K. and Sozen, M., "Analysis of Energy and Momentum Transport for Fluid Flow Through a Porous Bed", ASME Journal of Heat Transfer, 112, 690-699, (1990) https://doi.org/10.1115/1.2910442
  7. Amiri, A., Vafai, K., Kuzay, T., "Effects of Boundary Conditions on Non-Darcian Heat Transfer through Porous Media and Experimental Comparisons", Numerical Heat Transfer Part A, 27, 651-664, (1995) https://doi.org/10.1080/10407789508913724
  8. Kaviany, M. Principles of heat transfer in porous media, Springer, 48-60, 1995
  9. Hamaguchi, K., Takahashi, S., Miyabe, H., 'Pressure drop and thermal performance of regenerator matrix', Trans. JSME(B), 49, 1991-1999, (1983) https://doi.org/10.1299/kikaib.49.1991
  10. 이대영, 진재식, 강병하 "발포금속을 삽입한 밀집형 열교 환기의 최적설계", 설비공학 논문집, 제13권 제7호, 612-620, (2001)