DOI QR코드

DOI QR Code

PS-NC Genetic Algorithm Based Multi Objective Process Routing

  • 이성열 (관동대학교 공과대학 컴퓨터학과)
  • Published : 2009.12.30

Abstract

This paper presents a process routing (PR) algorithm with multiple objectives. PR determines the optimum sequence of operations for transforming a raw material into a completed part within the available machining resources. In any computer aided process planning (CAPP) system, selection of the machining operation sequence is one of the most critical activities for manufacturing a part and for the technical specification in the part drawing. Here, the goal could be to generate the sequence that optimizes production time, production cost, machine utilization or with multiple these criteria. The Pareto Stratum Niche Cubicle (PS NC) GA has been adopted to find the optimum sequence of operations that optimize two conflicting criteria; production cost and production quality. The numerical analysis shows that the proposed PS NC GA is both effective and efficient to the PR problem.

이 논문은 다목적 공정순서계획 알고리즘을 소개한다. 공정순서계획이란 가용한 기계들을 이용하여 원재료를 가공 완료된 부품으로 변형해주는 최적 공정순서들을 결정하는 일이다. 어느 컴퓨터 지원 공정계획 시스템에서나, 가공작업 순서의 결정은 부품 가공이나 부품 도면상의 기술적인 요구사항들을 충족시켜주기 위한 가장 중요한 활동 중의 하나이다. 여기서, 목표는 생산시간, 생산비용, 기계가동률 또는 이들을 복합적으로 만족시켜주는 최적 가공순서를 생성하는 일일 것이다. 파레토 스트라튬 니치 큐비클 (PS NC) 유전 알고리즘이 두 가지 상호 배타적인 기준인 생산비용과 생산품질을 동시에 최적화 시켜주는 가공순서들을 찾는데 이용되었다. 예제에 의한 검증은 제안된 PS NC 유전자 알고리즘이 공정계획문제에 있어서 효과적이며 효율적인 결과를 가져오는 것을 보여준다.

Keywords

References

  1. Awaclh, B., Sepehri, N. and Hawaleshka, O., "A Computer Aided Process Planning Model Based On Genetic Algorithms", Computers & Operations Research, Vol. 22, pp. 841 856, 1995. https://doi.org/10.1016/0305-0548(94)00072-G
  2. Bae, Suk-Tae, Hwang, Heung-Suk, Cho, Gyu-Sung, and Geon, Meng-Jong, "Integrated GA-VRP solver for multi-depot system", Computers & Industrial Engineering, Vol. 53, pp. 233-240, 2007. https://doi.org/10.1016/j.cie.2007.06.014
  3. Hyun, Chul Ju, Kim, Yeongho and Kim, Yeo Keun, "A Genetic Algorithm for Multiple Objective Sequencing Problems in Mixed Model Assembly Lines", Computers & Operations Research, Vol. 25, No. 7/8, pp. 675 690, 1998. https://doi.org/10.1016/S0305-0548(98)00026-4
  4. Jeon, Geonwook, Leep, Herman R., and Shim, Jae-Young, "A vehicle routing problem solved by using a hybrid genetic algorithm", Computers & Industrial Engineering, Vol. 53, pp. 680-692, 2007. https://doi.org/10.1016/j.cie.2007.06.031
  5. Jun, Sunghwa and Han, higeun, "Multi-Objective Micro-Genetic Algorithm for Multicast Routing", IE Interfaces, Vol. 20, No.4, pp. 504-514, 2007.
  6. Lee, Sung-Youl, "Clustering Parts Based on Pareto Optimization Using a Genetic Algorithm", Proceedings of the International Conference on Production Research, Bangkok, Tailand, August 02-04, 2000.
  7. Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs, Springer Verlag, Berlin, 1992.
  8. Moon, Chiung, and Gen, Mitsuo, "Evolutionary Algorithm for Process Plan Selection with Multiple Objectives", Proceedings of the APIEMS'99 conference, pp. 323 326, 1999.
  9. Tan, K.C., Goh, C.K., Mamun, A.A, and Ei, E.Z. "An evolutionary artificial immune system for multi-objective optimization", European Journal of Operations Research, Vol. 187, pp. 371-392, 2008. https://doi.org/10.1016/j.ejor.2007.02.047
  10. Wu, Xiaodan, Chu, Chao-Hsien, Wang, Yunfeng, and Yue, Dianmin, "Genetic algorithms for integraing cell formation with machine layout and schduling", Computers & Industrial Engineering, Vol. 53, pp. 277-289, 2007. https://doi.org/10.1016/j.cie.2007.06.021
  11. Zeramdini, Walid, Aigbedo, Henry and Monden Yasuhiro, "Using Genetic Algorithms for Sequencing Mixed Model Assembly Lines to Level Parts Usage and Workload", Proceedings of the APIEMS'99 conference, pp. 589-592, 1999.
  12. Zhou, Gengui and Gen, Mitsuo, "Evolutionary Computation on Multicriteria Production Process Planning", IEEE, pp. 419 -424, 1997.