DOI QR코드

DOI QR Code

Effect of Plant Growth Regulators on Callus Induction and Plant Regeneration from Mature Seed Culture of Miscanthus sinensis

억새 성숙종자로부터 캘러스 유도 및 식물체 재분화에 있어서 식물생장호르몬의 영향

  • Park, Choong-Hoon (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Yong-Goo (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Kyung-Hee (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Alam, Iftekhar (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Lee, Hyo-Jin (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Sharmin, Shamima Akhtar (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Lee, Ki-Won (National Institute of Animal Science, RDA) ;
  • Lee, Byung-Hyun (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University)
  • 박충훈 (경상대학교 응용생명과학부, 농업생명과학연구원) ;
  • 김용구 (경상대학교 응용생명과학부, 농업생명과학연구원) ;
  • 김경희 (경상대학교 응용생명과학부, 농업생명과학연구원) ;
  • 알람 이프테칼 (경상대학교 응용생명과학부, 농업생명과학연구원) ;
  • 이효진 (경상대학교 응용생명과학부, 농업생명과학연구원) ;
  • 샤르민 샤미마 (경상대학교 응용생명과학부, 농업생명과학연구원) ;
  • 이기원 (농촌진흥청 국립축산과학원) ;
  • 이병현 (경상대학교 응용생명과학부, 농업생명과학연구원)
  • Published : 2009.12.31

Abstract

In order to optimize tissue culture conditions for genetic transformation of Miscanthus sinensis, we investigated the effects of different plant growth regulators on callus induction and plant regeneration using mature seeds as explant. Dehusked mature seeds were cultured on MS medium supplemented with 3 to 10 mg/L 2,4-D, dicamba or NAA, 30 g/L sucrose and 750 mg/L $MgCl_2{\cdot}6H_2O$. A number of combinations of auxin and cytokinin (BA, kinetin) were also used. MS medium containing 3 mg/L 2,4-D was found optimal for embryogenic callus induction (75.7%) from mature seed. The highest number of plants were regenerated (44.6%) upon transferring the embryogenic callus to MS medium supplemented with 1 mg/L 2,4-D plus 2 mg/L BA. This high efficient plant regeneration system could be useful to use for molecular breeding of new cultivars by genetic transformation.

억새의 최적 조직배양조건을 확립하기 위하여 성숙종자로부터 배발생 캘러스 유도 및 캘러스로부터 식물체 재분화에 미치는 식물생장 조절물질의 영향을 조사하였다. 배발생 캘러스 유도시 첨가되는 auxin으로는 2,4-D가 가장 효율적이었으며, 3 mg/L 2,4-D가 첨가된 배지에서 배발생 캘러스가 가장 높은 빈도로 유도되었다. 식물체 재분화는 배발생 캘러스를 1 mg/L 2,4-D와 2 mg/L BA가 첨가된 재분화 배지에서 배양했을 때 가장 높은 재분화효율을 보여주었다. 본 연구를 통하여 확립된 효율적인 배발생 캘러스의 유도 및 식물체 재분화 체계는 억새의 신품종 개발을 위한 분자육종 기술 확립에 유용하게 이용 될 수 있을 것이다.

Keywords

References

  1. 우현숙, 이상훈, 이동기, 김진수, 원성혜, 이병현. 2004. 이탈리안 라이그래스의 성숙종자 유래 캘 러스로부터 효율적인 식물체 재분화. 한국식물생 명공학회지 31(1):43-48
  2. 이상훈, 이동기, 김진수, 이병현. 2003. 오차드그 래스 성숙종자로부터 캘러스 유도 및 고효율 식물체 재분화. 한국식물생명공학회지 30(4):341-346
  3. 이상훈, 우현숙, 이병현. 2004a. 이탈리안 라이그 래스의 형질전환에 미치는 몇 가지 요인의 영향. 한국동물자원과학회지 46(2):235-242
  4. 이상훈, 김범수, 원성혜, 조진기, 김기용, 박근제, 성병렬, 이효신, 이병현. 2004b. 들잔디 성숙종자 로부터 캘러스배양 및 식물체 재분화에 미치는 몇 가지 요인의 영향. 한국초지학회지 24(1): 29-36 https://doi.org/10.5333/KGFS.2004.24.1.029
  5. 임용우, 김기용, 최기준, 성병렬, 신정섭. 2000. 이탈리안 라이그라스 종자로부터 캘러스 유도 및 식물체 재분화. 한국초지학회지 20(1):25-30
  6. Bai, Y. and R. Qu. 2000. An evaluation on callus induction and plant regeneration of turf-type tall fescue (Festuca arundinacea Schreb.) cultivars. Grass Forage Sci. 55:326-330 https://doi.org/10.1046/j.1365-2494.2000.00235.x
  7. Chaudhury, A. and Q. Rongda. 2000. Somatic embryogenesis and plant regeneration of turf-type Bermuda grass: effect of 6-benzyladenine in callus induction medium. Plant Cell Tiss. Org. Cult. 60:113-120 https://doi.org/10.1023/A:1006456005961
  8. Cho, M.J., W. Jiang and P.G. Laumaux. 1998. Transformation of recalcitrant barley cultivars through improvement of regenerability and decreased albinism. Plant Sci. 138:229-244 https://doi.org/10.1016/S0168-9452(98)00162-9
  9. Clifton-Brown, J.C., P.F. Stampfl and M.B. Jones. 2004. Miscanthus biomass production for energy in Europe and its potential contribution to deceasing fossil fuel carbon emissions. Global Change Biology. 10:509-519 https://doi.org/10.1111/j.1529-8817.2003.00749.x
  10. Clifton-Brown, J. C., Y.-C. Chiang and T. R. Hodkinson. 2008. Miscanthus: Genetic resources and breeding potential to enhance bioenergy production. pp. 273-294 in: Genetic Improvement of Bioenergy Crops, Vermerris, W.(Ed.). ISBN: 978-0-387-70804-1
  11. Griffin, J.D. and M.S. Dibble. 1995. High frequency plant regeneration from seed-derived callus cultures of Kentucky bluegrass (Poa pratensis L.). Plant Cell Rep. 14:721-724
  12. Holme, I.B. and K.K. Petersen. 1996. Callus induction and plant regeneration from different explant types of Miscanthus x ogiformis Honda ‘Giganteus’. Plant Cell Tiss. Org. Cult. 45:43-52 https://doi.org/10.1007/BF00043427
  13. Holme, I.B., P. Krogstrup and J. Hansen. 1997. Embryogenic callus formation, growth and regeneration in callus and suspension cultures of Miscanthus x ogiformis Honda ‘Giganteus’ as affected by proline. Plant Cell Tiss. Org. Cult. 50:203-210 https://doi.org/10.1023/A:1005981300847
  14. Jones, M.B. and M. Walsh. 2001. Miscanthus for energy and fibre. James and James (Science Publishers). London
  15. Lewandowski, I., J.C. Clifton-Brown, J.M.O. Scurlock and W. Huisman. 2000. Miscanthus: European experience with a novel energy crop. Biomass and Bioenergy. 19:209-277 https://doi.org/10.1016/S0961-9534(00)00032-5
  16. Murashige, T. and F. Skoog. 1962. A revise medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  17. Petersen, K.K. 1997. Callus induction and plant regeneration in Miscanthus $\chi$ ogiformis Honda 'Giganteus' as influenced by benzyladenine. Plant Cell Tiss. Org. Cult. 49:137-140 https://doi.org/10.1023/A:1005808329685
  18. Petersen, K.K., J. Hansen and P. Krogstrup. 1999. Significance of different carbon source and sterilization methods on callus induction and plant regeneration of Miscanthus x ogiformis Honda ‘Giganteus’. Plant Cell Tiss. Org. Cult. 58:189- 197 https://doi.org/10.1023/A:1006348615717
  19. Speller, C.S. 1993. The potential for growing biomass crops for fuel on surplus land in the UK. Outlook Agric. 22:23-29 https://doi.org/10.1177/003072709302200105
  20. Van, D., P. Valk, F. Ruis, A.M. Tettelaar-Schrier, D. Van and C.M. Velde. 1995. Optimizing plant regeneration from seed-derived callus cultures of Kentucky bluegrass, the effect of benzyladenine. Plant Cell Tiss. Org. cult. 40:101-103 https://doi.org/10.1007/BF00041125
  21. Zhong, H. and M.B. Sticklen. 1991. Plant regeneration via somatic embryogenesis in creeping bentgrass. Plant Cell Rep. 10:453-456 https://doi.org/10.1007/BF00233813

Cited by

  1. Establishment of Callus Induction and Plant Regeneration System from Mature Seeds of Miscanthus sinensis vol.24, pp.5, 2011, https://doi.org/10.7732/kjpr.2011.24.5.628
  2. Plant Regeneration and Genetic Diversity of Regenerants from Seed-derived Callus of Reed (Phragmites communis Trinius) vol.26, pp.2, 2013, https://doi.org/10.7732/kjpr.2013.26.2.320
  3. Agrobacterium-mediated genetic transformation of Miscanthus sinensis vol.117, pp.1, 2014, https://doi.org/10.1007/s11240-013-0419-7