
정보학연구 제12권 제2호 2009년 6월(pp.31-37)

The Journal of Information Technology. Vol.12. No.2

C

Study on Design and Embodiment of Reference Image
Renewal System based on CBSD

Kyung Hun Kim

Dept. of Computer Engineering, KyungHee University

Kyeong Taek Rhyu
Dept. of Computer Information, Keukdong College University.

Jie Young Lee

Dept. of Computer School, SeMyung University

Tae Won Kyung(Corresponding author)

Dept. of Support Generalization, Korea Institute of Industrial Technology

Abstracts: - Component-based software development
[CBSD] is a new paradigm of recent software
development. CBSD was started from reuse of
software and study on software component technique.
In order to improve produce and quality of
software development, there is study on reuse of
components lively and how to develop, share, and
manage components effectively. In this study, I
would like to suggest a method that is able to
simply test a new application system by developing
systems developed individually into components,
registering them, and combining them..
Key-Words: CBSD, Reference Image Renewal,

Component Combination

1. Introduction
omponent-based software development [CBSD]
is a paradigm of recent software development

[1,2]. Also CBSD is a form of evolution of software
industry developed for a long time. CBSD is not
only a change of developing techniques, but a
structural change of software business and the
market in overall. It provided a new paradigm for
construction of application systems like e-Commerce,
e-Business, t-Commerce, and so on. Software
development has been done by code so far; it
has turned to change to by component. As it is
developed into component, it is possible for users

정보학연구 제12권 제2호 2009년 6월

to expect development productivity and
development improvement by component reuse[3].
Especially, study on software automatic generation
has been done in many fields and been marching
to show the best performance of solution that
solves particular problems in given condition.
Even if componentized in order to reuse component,
the environment that extends component should
be provided[4]. For reuse of component which
develops continuously, there should be an
integration environment to construct component
easily and reuse[5,17,20].
However, it costs a lot and takes long to develop
system independently in image processing field.
To solve this problem, an introduction of CBSD
is necessary. That is, an integration environment
that changes developed algorithms continuously
into components and registers them in order to
adapt to changing world rapidly. A standardization
of data form should be done simultaneously.
It has brought better development productivity and
quality improvement by developing a new application
system which is extended by developing
component and reusing in the integration
environment. This paper separates an algorithm,
develops a component, and constructs a new
application system by assembling the existing
component and the newly made component.

2 Related work on CBSD
Most popular defect detecting methods are Test, Peer
Review, Walkthrough, and Inspection. In this chapter,
differences of those four methods are compared.

2.1 Outline
The purpose of CBSD is to develop a new
software system by reusing pre-made components.
There are no developing tools based on software
architecture that understand interfaces of
components, combine related components, and
construct a component system. As the result of
study on algorithm componentization, there are
representative tools such as Khoros, LabView,

Matlab, Wit, etc. However, they are not perfect in
function and it is difficult to replace components
in assembly. In the image processing field, to embody
component which implements independently,
existing basic algorithms should be componentized.
And to use component, it should be added to
framework technique.
Also component management provided with newly-
made component is needed. In order to provide
more powerful functions of component technique,
architecture-based generation, assembly, and extraction
of component should be done and there have
been being studies on applying software architecture
technique to component technique abroad[6,7].

2.2 Features
When developing software, you can save cost and
time for software development if you use
pre-embodied block. On this wise pre-embodied
block is called component. Each entity is
integrated in component and that makes
replacement of software and reuse easy. Service is
done only through interface[8]. Component
provides developer interface by running unit and
hides the detailed inner part and it enables to
develop application easily and quickly.

2.3 Framework
Framework makes connection between components
easy when a system is constructed. The things
needed for developing framework is as followed.

- Abstract Class
- Constraints
- Dynamic code loading
A program based on framework distinguishes the
part that does not change from the part that
changes and provides a mechanism that applies a
change to the part that can be changed.
Framework-based programming defines framework,
analyzes the set of applications, and defines and
designs architecture by dividing domains and
specializing. And in the stage of embodiment, it
makes logical design as an actual solution.

----------------------Study on Design and Embodiment of Reference Image Renewal System based on CBSD

2.4. Reuse Technology
Reuse technique of component is classified into
methods how to compose and use patterns according
to features and rules of components. Composition
method is stored at reuse library as a source code of
reuse component itself, so when used for new system,
it can be used without transformation. When it uses
patterns, it has to apply the certain rules and
generates source codes regularly according to
restriction conditions. Reuse of component is a technique
applied to construct similar domain or system by
systematically managing used component to develop
system and information of the component and
knowledge.

2.5. Component Configuration Management
So as to reuse pre-made component for development,
use, maintenance of component that is used to
construct software system, there should be consistency
while component is used. it also has to extend new
construction elements of component in addition, keep
new dependent relationship, and firm independent
construction elements. It manages artificial structures
generated in the process of development and assists
software development by controlling changes of
software and its components, and remembering
development [2,6,21-24].
Single component manages the direction of
evolution of component, new version, and other
components’ modifications composite component
manages newly-made configuration creation, baseline
creation, modification, and branching. However the
projects these days are share and processed, so
configuration management system is getting complex
and it should be run in distributed environment.
Configuration management should be completed
separated to perform policies with flexibility by
separating configuration management.

2.6. Various Types of Component Combination
Elements of combination in the system based on
component are component and framework, the
combination types of these elements are divide into

3 categories; the combination of components, the
combination of component and framework, and the
combination of frameworks. They can be divided
into 6 small categories again as shown <Table 1>.

<Table 1> Types of Component Combination

Form/
Technology EJB COM+ Java

Bean
Water
Bean

OMG/
Brbos

Component
Deployment

Framework
Deployment

Future
(container
contract)

 (JVM
plug-in)

Simple
Composition

Heterogeneous
Composition (IIOP) (IIOP)

Framework
Extension

Future
(policy
object)

Component
Assembly

3. Design and Embodiment of Component
3.1 Structure of Component
For reuse, component structure is designed that
information of component link is reorganized and run
at the point of time of run-time of component
call-part when the component is used or run, so it
need not be defined in advance at compile-time. That
is, as a user uses component call-part, the component
is linked and run, and we can see the result.

Figure 1. Embodiment Code approaching Data Form as an Object

 This kind of component execution can be
developed by component and component call-part
independently and enables to modify a particular
component continuously, it can minimize the
developing period. <Figure 2> shows a simple
example how to arrange each component.

That is, a simple application program component
is generated by arranging component sub made by
describing just algorithm and read and write
which are existing components. The result

정보학연구 제12권 제2호 2009년 6월

generated from each component goes to the
pointer and is run, so it makes the complex of
component structure minimum and the simplified
component structure is arranged.
Also to approach data easy, it has been embodied
by using general classes. <Figure 1> shows the
code that directly approaches data and object
generated from class.

Figure 2. Component Arrangement and Connection Structure

<Figure 3> shows the whole structure of all
information needed for component operation and
reuse; the actual component execution files’ names
related to component execution, parameters and
related information, initial value, directions of
input/output, icon information, etc.

Figure 3. Component Information Structure

3.2 Configuration Management
It is composed to keep history information of
source code file with the method of configuration
management centered of workspace file which the
logical relationship is applied to configuration
management structure. All information of each
component is stored at upper workplace file and
configuration server generates hyperlink
information, registers, and manages. It also has a
branch function that has link information which
enables to keep existing configuration management
history. That is, inter-mediate products generated
in the process of component development can be
found out to be right component in other
application system. Due to this feature, it has to
have a structure that registers new components.

3.3 Embodiment and Result
3.3.1. Component Development Environment
In this paper I have developed a component,
assembled the component, and embodied it partly
in the system. Hello Vision2000, the developing
tool used for embodiment, is a CBD development
tool [11,12].

3.3.2. Internal Composition Elements
Main internal composition elements are visual
programming environment, automatic function
interface generation system, online function
database, resource management system, hardware
and operation management system, etc.

-Visual Programming Environment
Support Drag&Drop
-Automatic function Interface Generation System
Automatic registration of interface
-Algorithm Information Management System
 Management in form of DLL:Dynamic Link
 Library
-Resource Management System
 Support Management system
-Hardware and Operation Management System
 Easy Portability to Hardware and Operation system

----------------------Study on Design and Embodiment of Reference Image Renewal System based on CBSD

3.3.3. Component Registration and Use Procedure
It uses workspace provided and uses Drag&Dropd
from the function database management window
as shown in <Figure 4>, and generates user-
defined component by using Visual C++.

Figure 4. User Component Registration Procedure

3.4.4. Embodiment
I used Hello vision2000 and Microsoft Visual
C++, component integration development tools, to
develop component, registered, and then
assembled with existing component and finally
embodied a part of extraction system of moving
object.

(, ,) (, ,) (, ,)D K x y I K x y B K x y= −

(, ,) (, ,), (, ,)
(1, ,)

(, ,) (, ,),
B K x y aD K x y if D K x y T

B K x y
B K x y bD K x y otherwise

+ >
+ =

+

Expression 1. lowpasss filtering expression

In order to compare the algorithm proposed that
system uses lowpass filtering algorithm, a part of
existing system, there should be two systems
developed in two independent environments. For
the text environment for performance evaluation,
there must be a comparison of two systems.
However, if each system will be embodied as
component, only the component to be compared
can be embodied. If embodied component itself
is assembled and compared, a lot of money and
time will be saved.

[]

(, ,), (, ,)
(, ,)

(, ,),

(1, ,) (, ,),..., (, ,)

I K x y if D K x y T
T K x y

R K x y otherwise

B K x y Median T K w x y T K x y

<
=

+ = −

Expression 2. Proposed Method

Expression 1 expressed the algorithm of lowpass
filtering as an expression. In the expression above,
I(K, x, y) and R(K, x, y) are the value of pixel
of input image at the time k and (x, y) of
reference image and a and b are meditation
factors and decide the result. D is Difference
Image and T is a critical that separates moving
object and background.
Expression 2 represented a proposed algorithm of
Reference Image Update for Moving Object
Detection in the Outdoor Scene. in the expression
above, T(K, x, y) is a temporary image to get
Reference Image to present image, if present
Difference Image D(K, x, y) is smaller than
critical, it gets the pixel of present image,
otherwise, it gets the pixel by allocating R(K, x,
y) of Reference Image.
Algorithm parts of two systems were embodied as
components and the performances were compared
and evaluated. If they were developed and
evaluated with the existing method, more money
and time would need to develop independent
systems. I in this paper developed as component
and assembled.

Figure 5. Workspace of Hello vision 2000

정보학연구 제12권 제2호 2009년 6월

 <Figure5> <Figure6> shows a component system
that it arranged a developed component and an
existing component onto workspace and
assembled. This composite component system may
be arranged as a part of another bigger system.
Once developed component should always be
registered and manage d to reuse. It also provides
GUI environment, so it shows information of
component or functional addition or error in
visual. In the case of functional addition of
developed component or change of attributes, it
can be modified by using attribute interface of
component.
I in this paper embodied reference image renewal
system, a part of moving object detection and
tracking system, for moving object separation as a
component [13]-[16].
It is developed as a component unit to assemble
like a part to the system, so it can have a
flexibility to be applied to a new system and
shorten development time and have good quality.

 a) The Profile consists
 of components

 b) Profile implemented
 in one system

 Figure 6. 3D profiles

4. Conclusions and Further Research
It is important to understand component because
the paradigm changes to generate component,
assemble, and produce software.
Better performance and quality should be kept
when the existing components are reused, and on
the web environment assembly of component and
arrangement should be more flexible.
There also should continue study on configuration
management of component. That is why it faces
newly-composed information according to keeping

system maintenance and mutual operation by
considering newly-required matters.
The study that supports the stage of retrieval,
arrangement, combination, run for component on
the web service should continue further. Service
with assembly of Web Service Component is
within the CBD, Hence, development of business
component should be studied too in the future.

References
[1] M. Aoyama, Componet-Based Software Engineering

: Can It Change the Way of Software
Development? In Proceedings of the International
Conference on Software Engineering, Vol II, April.
1998.

[2] Lu Zhang, Hong Mei, Hong Zhu.:A configuration
management system supporting component-based
software development. Computer software and
Application Conference, 2001. COMPSAC 2001.
25th Annual International 8-12 Oct. 2001.

[3] S. Yau, N. Dong.:Integration in Component-Based
Softwqre Developoment Using Design Patterns. Proc.
Of the 24th COMPSAC’00, 2000.

[4] F. Yang, H. Mei, and K. Li.: Software Reuse and
Software Component Technology, Acta Electronica
Sinica, vol. 27, no. 2, pp. 68-75, Feb. 1999.

[5] J.H.Lee, Y.T. Cho, H. Heo, Oksam Chae.:Integrated
Development Environment for Digital Image
Computing and Configuration Management.
spirnger-Verlag Lecture Notes CS, Vol.3488,
pp.20~29, Apirl 5005.

[6] A. Van der Hoek, A. Carzaniga, D. Heimbigner,
A.L. Wolf.:A tested for configuration management
policy programming. Software Engineering, IEEE
Transactions on Vol 28, Issue 1, pp. 79-99. Jan.
2002.

[7] A.W.Brown and K. C. Wallnau.:Engineering of
Component-Based Systems. Component-Based
Software Engineering. IEEE CS Press, pp.7-15,
1996.

[8] James D. Palmer, N. Ann Fields.:Computer
Supported Cooperative Work. Computer, Vol.36,
1994.

----------------------Study on Design and Embodiment of Reference Image Renewal System based on CBSD

[9] David Garlan, Dewayne Perry.:Software
Architecture:Practice, Potential and Pitfalls.
Proceeding of the International Conference on
Software Engineering ’96, 1996

[10] J.Siegel. CORBA:Fundamentals and Programming.
John Wiley, 1996.

[11] Jungheon Lee, YoungTak Cho, Hoon Heo, Oksam
Chae.:MTES:Visual Prgramming for Teaching and
Research in Image Processing., Springer- Verlag
Lecture Notes in Computer Science, Vol. 3514, pp.
1035-1042, April 2005

[12] D. Box. Essential COM. Addison-Wesley, 1999.
[13] W.Long, Y.Yang.:Stationary background generation:

an alternative to the difference of two Image.
Patten Recognition 23 pp. 1351-1359, 1990

[14] M. Boninsegna, A. Bozzoli.:A tunable algorithm to
update a reference image. Signal Processing:Image
Communication16 pp.353-365, 2000

[15] K.Karmann, A.Brandt, R.Gerl.:Moving object
segmentation based on adaptive reference image.
Signal Processing 5, pp.951-954, 1990

[16] K.Skifstad,R.Jain.:Illumination independent change
detection for rear world image sequences,” Comput.
Vision Graphics Image Process 46, pp.387-399,
1989

[17] H. Mili, F. Mili, and A. Mili.: Reusing
Software:Issues and Research Direction, IEEE
Transactions on Software Engineering Vol. 21, No.
6, pp.528-561, June. 1995.

[18] M. Kilger, T. Dietl.:Interpretation-drive low-level
parameter adaptation in scene analysis, in:F.Picher,
R,Moren-oDiaz (Eds), Comput.Aidid Syst. Theory.
EUROCAST’ 93, spri0nger, Berlin, pp. 380-387,
1993

[19] Christo Ridder, Olaf Munkelt, Harald
kirchner.:Adaptive Background Estmation and
Foreground Detection using Kalman-Filtering.
Bavarian Research Center for Knowledge-Based
System Orleansstr. 34, D-81667 Munchen,
Germany.

[20] Magnus Larsson, Lvica Crnkovic.:Configuration
Management for Component-based Systems. In
Software Configuration management – SCM 10, 2001

[21] Axel Mahler, Andreas Lampen.:A toolkit for
software configuration management, 1988

[22] R. Conradi and B. Westfechtel.:Configuration
Versioned Software Product. SCM-6 Workshop. Pp.
88-109. Spring LNCS 1167. Berlin, March 1996.

[23] S. Dart.:Concepts in configuration Management
Systems. Proc. of the 3rd. Intl . Workshop on
Software Configuration Management. Trondheim,
Norway, june, 1997

[24] J. Estublier.:Workspace Management in Software
Engineering Environment. SCM-6 Workshop.
Springer LNCS, 1167. Berlin, Germany, March
1996

