Identification of Tumor Suppressor Genes on Chromosome 21

제21번 염색체의 종양억제유전자 발굴

  • Lee, Eung-Bae (Department of Thoracic and Cardiovascular Surgery, Kyungpook National University Hospital, College of Medicine, Kyungpook National University) ;
  • Choi, Jin-Eun (Department of Biochemistry, School of Medicine, Kyungpook National University) ;
  • Jang, Jin-Sung (Department of Biochemistry, School of Medicine, Kyungpook National University) ;
  • Park, Jae-Yong (Department of Internal Medicine, Kyungpook National University Hospital, College of Medicine, Kyungpook National University)
  • 이응배 (경북대학교 의과대학 경북대학교병원 흉부외과학교실) ;
  • 최진은 (경북대학교 의학전문대학원 생화학교실) ;
  • 장진성 (경북대학교 의학전문대학원 생화학교실) ;
  • 박재용 (경북대학교 의과대학 경북대학교병원 내과학교실)
  • Published : 2009.04.05

Abstract

Background: We performed this study to identify the tumor suppressor genes located in the long arm of chromosome 21 in non-small cell lung cancer. Material and Method: The genes of USP25 in 21q11.2, NCAM2, ADAMTS1 in 21q21.2, and Claudin-8 (CLDN8), Claudin-17 (CLDN17) and TIAM1 in 21q22.1 were investigated for their gene expressions, genetic alterations and promoter methylation. Result: The expressions of CLDN8 and CLDN17 were significantly decreased in 7 (L132, H157, H358, H522, H1299, H1703 and HCC2108) of 13 cell lines, and the expression of ADAMTS1 was also significantly reduced in 6 cell lines (A549, SW900, H1299, H1373, H1703 and H1793). There were no genetic alterations by PCR-SSCP and cDNA cloning in the cell lines with a decreased gene. In the cell lines with a decreased gene expression, the mRNA expression was increased significantly with treatment of 5-Aza-CdR. Conclusion: These results suggest that the ADMTS1, CLDN8 and CLDN17 may act as tumor suppressor genes.

배경: 폐암의 암화과정에 관여하는 21번 염색체 장완에 존재하는 종양억제유전자를 발굴하고자 하였다. 대상 및 방법: 21q11.2 구역의 USP25, 21q21.2 구역의 NCAM2, ADAMTS1, 그리고 21q22.1 구역의 Claudin-8 (CLDN8), Claudin-17 (CLDN17), TIAM1 유전자를 대상으로 비소세포폐암 세포주에서 이들 유전자의 발현 정도와 돌연변이 및 촉진자 메틸화 유무를 조사하였다. 결과: 13가지 비소세포폐암 세포주 가운데 7가지 세포주(L132, H157, H358, H522, H1299, H1703, HCC2108)에서 CLDN8, CLDN17의 발현이 유의하게 감소되었고, ADAMTS1의 경우 6가지 세포주(A549, SW900, H1299, H1373, H1703, H1793)에서 발현양이 유의하게 감소되었다. 유전자 발현의 감소가 있는 세포주와 그렇지 않은 세포주간의 PCR-SSCP의 band pattern의 차이가 없으며 염기서열의 분석에서도 genetic alteration은 관찰되지 않았다. 발현이 감소되어 있는 세포주에 5-Aza-CdR을 처리한 경우 유전자의 발현양이 유의하게 증가되었다. 결론: ADMTS1, CLDN8, CLDN17 유전자는 폐암의 암화과정에 관여하는 종양억제유전자일 가능성을 시사하며, 유전자의 발현 감소는 유전자 촉진자 부위의 methylation에 의함을 시사한다.

Keywords

References

  1. Minna JD, Sekido Y, Fong Y, Gazdar AF. Molecular biology of lung cancer. In: DeVita TV, Hellman S, Rosenberg SA. Cancer: principles and practice of oncology. 5th ed. Philadelphia: Lippincott. 1997;849-57
  2. Chan DC, Soriano A, Kane MA, Helfrich B, Bunn PA. Biology of lung cancer. In: Hanse HH. Textbook of lung cancer. 1st ed. London: Martin Dunitz. 2000;27-73
  3. Kundson AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971;68:820-3 https://doi.org/10.1073/pnas.68.4.820
  4. ones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet 1999;21:163-7 https://doi.org/10.1038/5947
  5. Stanbridge EJ. Human tumor suppressor genes. Annu Rev Genet 1990;24:615-7 https://doi.org/10.1146/annurev.ge.24.120190.003151
  6. Weinberg RA. Tumor suppressor genes. Science 1991;254: 1138-4 https://doi.org/10.1126/science.1659741
  7. Gasparian AV, Laktionov KK, Belialova MS-O, Pirogova NA, Tatosyan AG, Zborovskaya IB. Allelic imbalance and instability of microsatellite loci on chromosome 1p in human non-small cell lung cancer. Br J Cancer 1998;77:1604-11 https://doi.org/10.1038/bjc.1998.263
  8. Rabbits P, Douglas J, Daly M, et al. Frequency and extent of allelic loss in the short arm of chromosome 3 in non-small cell lung cancer. Genes Chrom Cancer 1989;1:95-105 https://doi.org/10.1002/gcc.2870010115
  9. Sato S, Nakamura Y, Tsuchiya E. Difference of allelotype between squamous cell carcinoma and adenocarcinoma of the lung. Cancer Res 1994;54:5652-5
  10. Merlo A, Gabrielson E, Askin F, Sidransky D. Frequent loss of chromosome 9 in human primary non-small cell lung cancer. Cancer Res 1994;54:640-2
  11. Weber JL, May PE. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 1989;44:388
  12. Tamuka K, Zhang X, Murakami Y, et al. Deletion of three distinct regions on chromosome 13q in human non-small cell lung cancer. Int J Cancer 1997;74:45-9 https://doi.org/10.1002/(SICI)1097-0215(19970220)74:1<45::AID-IJC8>3.0.CO;2-0
  13. Friend SH, Bernards R, Rogelj S, et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 1986;323:643-6 https://doi.org/10.1038/323643a0
  14. Reissmann PT, Koga H, Takahashi R, et al. Inactivation of the retinoblastoma susceptibility gene in non-small cell lung cancer. Oncogen 1993;8:1913-9
  15. Sozzi G, Veronese ML, Negrii M, Baffa R, Cotticelli MG, Inoue H. The FHIT gene at 3p14.2 is abnormal in lung cancer. Cell 1996;85:17-26 https://doi.org/10.1016/S0092-8674(00)81078-8
  16. Stage D, Sommelet D, Geneix A, et al. A tumor profile in Down syndrome. Am J Med Genet 1998;78:207-16 https://doi.org/10.1002/(SICI)1096-8628(19980707)78:3<207::AID-AJMG1>3.0.CO;2-M
  17. Hasle H, Clemmensen IH, Mikkelsen M. Risk of leukaemia and solid tumors in individuals with Down's syndrome. Lancet 2000;355:165-9 https://doi.org/10.1016/S0140-6736(99)05264-2
  18. Lee EB, Park TI, Park SH, Park JY. Loss of heterozygosity on the long arm of chromosome 21 in non-small cell lung cancer. Ann Thorac Surg 2003;75:1597-600 https://doi.org/10.1016/S0003-4975(02)04902-0
  19. Girard L, Zochbauer-Muller S, Virmani AK, Gazdar AF, Minna JD. Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer Res 2000;60:4894-906
  20. Ohgaki K, Lida A, Kasumi F, Sakamoto G, Akimoto M, Emi M. Mapping of a new target region of allelic loss to a 6-cM interval at 21q21 in primary breast cancers. Genes Chromosomes Cancer 1998;23:244-7 https://doi.org/10.1002/(SICI)1098-2264(199811)23:3<244::AID-GCC6>3.0.CO;2-1
  21. Sakara K, Tamura G, Nishizuka S, et al. Commonly deleted regions on the long arm of chromosome 21 in differentiated adenocarcinoma of the stomach. Genes Chromosomes Cancer 1997;18:318-21 https://doi.org/10.1002/(SICI)1098-2264(199704)18:4<318::AID-GCC12>3.0.CO;2-C
  22. Yamamoto N, Uzuwa K, Miya T, et al. Frequent allelic loss/imbalance on the long arm of chromosome 21 in oral cancer. Evidence for three discrete tumor suppressor gene loci. Oncol Reports 1999;6:1223-7
  23. Kohno T, Kawanishi M, Matsuda S, et al. Homozygous deletion and frequent allelic loss of the 21q11.1-q21.1 region including the ANA gene in human lung carcinoma. Genes Chromosomes Cancer 1998;21:236-43 https://doi.org/10.1002/(SICI)1098-2264(199803)21:3<236::AID-GCC8>3.0.CO;2-0
  24. Groet J, Ives JH, Jones TA, et al. Narrowing of the region of allelic loss in 21q11-21 in squamous non-small cell lung carcinoma and cloning of a novel ubiquitin-specific protease gene from the deleted segment. Genes Chromosomes Cancer 2000;27:153-61 https://doi.org/10.1002/(SICI)1098-2264(200002)27:2<153::AID-GCC6>3.0.CO;2-A
  25. Kundson AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971;68:820-3 https://doi.org/10.1073/pnas.68.4.820
  26. Cook DL, Gerber AN, Tapscott SJ. Modeling stochastic gene expression: Implications for haploinsufficiency. Proc Natl Acad Sci 1998;95:15641-6 https://doi.org/10.1073/pnas.95.26.15641
  27. Venkatachalam S, Tyner SD, Pickering CR, Boley S, Recio L. Is p53 haploinsufficient for tumor suppression? Implications for the p53+/󰠏 mouse model in carcinogenecity testing. Toxicol Pathol 2001;29(supple):147-54 https://doi.org/10.1080/019262301753178555
  28. Tuker T, Friedman JM. Pathogenesis of hereditary tumors: beyond the “two hit” hypothesis. Clin Genet 2002;62:345-57 https://doi.org/10.1034/j.1399-0004.2002.620501.x