DOI QR코드

DOI QR Code

Effect of Maternal Age on Chromosome Aberrations and Telomere Quantity in Chick Embryos

닭의 모체 연령에 따른 생산 배아의 염색체 이상 빈도 및 텔로미어 함량 분석

  • Lee, Soo-Hee (Department of Animal Science and Biotechnology, Jinju National University) ;
  • Subramani, Vinod K. (Department of Animal Science and Biotechnology, Jinju National University) ;
  • Sohn, Sea-Hwan (Department of Animal Science and Biotechnology, Jinju National University)
  • 이수희 (진주산업대학교 동물생명과학과) ;
  • ;
  • 손시환 (진주산업대학교 동물생명과학과)
  • Published : 2009.12.31

Abstract

The rate of fetus with abnormal chromosomes increase with maternal age. Nondisjunction of aging oocyte chromosome is a major reason for the increased rate of abnormalities. Telomeres are the ends of eukaryotic chromosome, which are essential for chromosome stability and are related in cell senescence. This study was carried out to analyze the chromosome aberration rate and amount of telomeric DNA in chick embryo along with maternal age. Fertilized eggs and blood were sampled from White Leghorn layers starting at 20 weeks through to 70 weeks age at 10 weeks interval. Chromosome aberration rate was analyzed by karyotyping. The amounts of telomeric DNA in embryonic cells and lymphocytes were quantified by Quantitative Fluorescence in situ Hybridization method. The chromosome aberration rate in chick embryos significantly differed with maternal age. The chromosome aberration rate increased at early laying period and beyond 70 weeks of maternal age. Therefore, chromosome aberration rate was affected by maternal age due to ovulated oocytes state. However, the amount of telomeric DNA on embryonic cells did not differ significantly with maternal age. Thus, maternal age does not affects telomere quantity in their embryos due to cellular reprograming at early embryonic stage after fertilization.

모체 출산 연령이 늦어짐에 따라 태아의 염색체 이상 빈도는 증가하는 것으로 알려져 있는데, 이는 난자의 노화에 따른 염색체의 비분리 현상의 증가 등이 주된 원인이다. 염색체 양 말단에 존재하는 텔로미어는 염색체의 안정성에 관여하고 세포분열이 진행됨으로써 이의 길이가 짧아져 노화의 지표로 활용되고 있다. 따라서 본 연구는 모체의 노화가 생산 배아에 미치는 영향을 알아보기 위하여 닭의 산란 연령별 배아의 염색체 이상 빈도와 이들의 텔로미어 함량을 분석하였다. 시험 분석은 20주령에서부터 70주령까지의 화이트 레그혼 종을 공시하고 10주 간격으로 생산된 수정란의 초기 배아에 대한 핵형 분석과 양적형광보인법(Q-FISH)을 이용한 모계 및 생산 배아의 텔로미어 함량을 분석하였다. 분석 결과, 초기 배아의 염색체 이상 빈도는 산란 연령에 따른 유의적인 차이가 있었는데, 산란 초기에 상대적으로 높은 염색체 이상 빈도를 보이다가 산란 중기에서 안정된 빈도를 유지하고, 후기부터 다시 이상 빈도가 증가하는 양상을 보여 모체의 노화가 태아의 염색체 이상 빈도에 영향을 미치는 것으로 나타났다. 개체의 텔로미어 함량은 연령이 증가함에 따라 점진적 감소 양상을 나타내는 반면, 모계 연령에 따른 생산 배아들의 텔로미어 함량은 연령 간에 차이가 없는 것으로 나타나 모체의 노화가 수정 배아의 텔로미어 함량에는 영향을 미치지 않는 것으로 보여진다. 이는 배란 후 수정이 된 배아는 초기 발생 과정 중 세포들의 reprograming이 일어나 텔로미어가 복구됨을 의미한다.

Keywords

References

  1. Betts DH, Bordingnon V, Hill JR, Winger Q, Westhusin ME, Smith LC, King WA 2001 Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle. Proc Natl Sci USA 98:1077-1082 https://doi.org/10.1073/pnas.031559298
  2. Blackburn EH 1991 Structure and function of telomere. Nature 350:569-573 https://doi.org/10.1038/350569a0
  3. Bloom SE 1969 Chromosome abnormalities in early chicken (Gallus domesticus) embryos. Chromosoma 28:357-369 https://doi.org/10.1007/BF00284932
  4. Bloom SE 1972 Chromosome abnormalities in chicken (Gallus domesticus) embryo: Types, frequencies and phenotypic effects. Chromosoma 37:309-326 https://doi.org/10.1007/BF00319873
  5. Bloom SE 1974 The origins and phenotypic effects of chromosome abnormalities in avian embryos. Proc 15 World Poult Cong: 316-320
  6. Bloom SE, Buss EG 1966 Triploid-diploid mosaic chicken embryo. Science 153:759-760 https://doi.org/10.1126/science.153.3737.759
  7. Borgaonkar DS 1969 Observations on the chromosomes of one chicken (Gallus domesticus). Poult Sci 48:331-333 https://doi.org/10.3382/ps.0480331
  8. Cuckle HS, Wald NJ, Thompson SG 1987 Estimating a woman's risk of having a pregnancy associated with Down's syndrome using her age and serum alpha-fetoprotein level. Br J Obstet Gynaecol 94:387-402 https://doi.org/10.1111/j.1471-0528.1987.tb03115.x
  9. Dorland M, van Kooij RJ, te Velde ER 1998 General ageing and ovarian ageing. Maturitas 30:113-118 https://doi.org/10.1016/S0378-5122(98)00066-8
  10. Faddy MJ 2000 Follicle dynamics during ovarian ageing. Mol Cell Endocrinol 163:43-48 https://doi.org/10.1016/S0303-7207(99)00238-5
  11. Faddy MJ, Gosden RG, Gougeon A, Richardson SJ, Nelson JF 1992 Accelerated disappearance of ovarian follicles in midlife:implications for forecasting menopause. Hum Reprod 7:1342-1346 https://doi.org/10.1093/oxfordjournals.humrep.a137570
  12. Faragher RG, Kipling D 1988 How might replicative senescence contribute to human ageing? Bioassays 20:985-991 https://doi.org/10.1002/(SICI)1521-1878(199812)20:12<985::AID-BIES4>3.0.CO;2-A
  13. Fechheimer NS 1981 Origins of heteroploidy in chicken embryos. Poul Sci 60:1365-1371 https://doi.org/10.3382/ps.0601365
  14. Fechheimer NS 1990 Chromosomes of chickens. Advances in Veterinary Sci and Comparative Medicine 34:167-207
  15. Fechheimer NS, Zartman DL, Jaap RG 1968 Trisomic and haploid embryos of the chick (Gallus domesticus). J Reprod Fertil 19:215-217 https://doi.org/10.1530/jrf.0.0170215
  16. Frenck RW Jr, Blackburn EH, Shannon KM 1998 The rate of telomere sequence loss in human leukocytes varies with age. Proc Natl Acad Sci USA 95:5607-5610 https://doi.org/10.1073/pnas.95.10.5607
  17. Greider CW, Blackburn EH 1985 Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405-413 https://doi.org/10.1016/0092-8674(85)90170-9
  18. Gustavsson I 1990 Chromosome of the pig. Advances in Veterinary Sci and Comparative Medicine 34:73-107 https://doi.org/10.1016/B978-0-12-039234-6.50008-2
  19. Hakim RB, Gray RH, Zacur H 1995 Infertility and early pregnancy loss. Am J Obstet Gynecol 172:1510-1517 https://doi.org/10.1016/0002-9378(95)90489-1
  20. Hassold T, Hunt P 2001 To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2:280-291 https://doi.org/10.1038/35066065
  21. Hecht CA, Hook EB 1996 Rates of Down syndrome at livebirth by one-year maternal age intervals in studies with apparent close to complete ascertainment in populations of European origin: a proposed revised rate schedule for use in genetic and prenatal screening. Am J Med Genet 62:376-385 https://doi.org/10.1002/(SICI)1096-8628(19960424)62:4<376::AID-AJMG10>3.0.CO;2-L
  22. Jiang L, Carter DB, Xu J, Yang X, Prather RS, Tian XC 2004 Telomere lengths in cloned transgenic pigs. Biol Reprod 70:1589-1593 https://doi.org/10.1095/biolreprod.103.022616
  23. King WA 1990 Chromosome abnomalities and pregnancy failure in domestic animals. Advances in Veterinary Sci and Comparative Medicine 34:229-250 https://doi.org/10.1016/B978-0-12-039234-6.50013-6
  24. Lamb NE, Feingold E, Savage A, Avramopoulos D, Freeman S, Gu Y, Hallberg A, Hersey J, Karadima G, Pettay D, Saker D, Shen J, Taft L, Mikkelsen M, Petersen MB, Hassold T, Sherman SL 1997 Characterization of susceptible chiasma configurations that increase the risk for maternal nondisjunction of chromosome 21. Hum Mol Genet 6:1391-1399 https://doi.org/10.1093/hmg/6.9.1391
  25. Lanza RP, Cibelli JB, Blackwell C, Cristofalo VJ, Francis MK, Baerlocher GM, Mak J, Schertzer M, Chavez EA, Sawyer N 2000 Extension of cell life-span and telomere length in animals cloned from senescent somatic cells. Sci 288:665-669 https://doi.org/10.1126/science.288.5466.665
  26. Lodge JR, Fechheimer NS, Miller RC 1973 Deletion, monosomy, and multiple monosomy-trisomy mosaicism in chicken embryos. Poult Sci 52:397-399 https://doi.org/10.3382/ps.0520397
  27. Long SE 1990 Chromosomes of sheep and goats. Advances in Veterinary Sci and Comparative Medicine 34:109-129 https://doi.org/10.1016/B978-0-12-039234-6.50009-4
  28. McFeely RA 1967 Chromosome abnormalities in early embryos of the pig. Reprod Fertil 13:579-581 https://doi.org/10.1530/jrf.0.0130579
  29. Miller JF, Williamson E, Glue J, Gordon YB, Grudzinskas JG, Sykes A. 1980 Fetal loss after implantation. A prospective study. Lancet 2:554-556
  30. Miller RC, Fechheimer NS, Jaap RG 1971 Chromosome abnormalities in 16- to 18-hour chich embryos. Cytoegenetics 10:121-136 https://doi.org/10.1159/000130134
  31. Miller RC, Fechheimer NS, Jaap RG 1976 Distribution of karyotype abnormalities in chick embryo sibships. Biol Reprod 14:549-560 https://doi.org/10.1095/biolreprod14.5.549
  32. Miyashita N, Shiga K, Yonai M, Kaneyama K, Kobayashi S, Kojima T, Goto Y, Kishi M, Aso H, Suzuki T, Sakaguchi M, Nagai T 2002 Remarkable difference in telomere lengths among cloned cattle derived from different cell types. Biol Reprod 66:1649-1655 https://doi.org/10.1095/biolreprod66.6.1649
  33. Mong SF, Snyder MD, Fechheimer NS, Jaap RG 1974 The origin of triploidy in chick (Gallus domesticus) embryos. Genome 16:317-322 https://doi.org/10.1139/g74-035
  34. Ohno S 1961 Sex chromosomes and microchromosomes of Gallus domesticus. Chromosoma 11:484-498 https://doi.org/10.1007/BF00328670
  35. Olsen CL, Cross PK, Gensburg LJ, Hughes JP 1996 The effects of prenatal diagnosis, population ageing, and changing fertility rates on the live birth prevalence of Down syndrome in New York State, 1983-1992. Prenat Diagn 16:991-1002 https://doi.org/10.1002/(SICI)1097-0223(199611)16:11<991::AID-PD977>3.0.CO;2-5
  36. Owen JJ 1965 Karyotype studies on Gallus domesticus. Chromosoma 16:601-608 https://doi.org/10.1007/BF00326975
  37. Pollock DL, Fechheimer NS 1976 The chromosome number of Gallus domesticus. Br Poult Sci 17(1):39-42 https://doi.org/10.1080/00071667608416247
  38. Power MM 1990 Chromosome of the horse. Advances in Veterinary Sci and Comparative Medicine 34:131-167 https://doi.org/10.1016/B978-0-12-039234-6.50010-0
  39. Shay JW 1999 At the end of the millennium, a veiw of the end. Sci 288:1377-1379 https://doi.org/10.1126/science.288.5470.1377
  40. Shiels PG, Kind AJ, Campbell KH, Waddignton D, Wilmut I, Colman A, Schnieke AE 1999 Analysis of telomere lengths in cloned sheep. Nature 399:316-317 https://doi.org/10.1038/20580
  41. Snyder MD, Fehheimer NS, Jaap RG 1975 Incidence and origin of heteroploidy, especially haploidy in chick embryos from intraline and interline matings. Cytogenet Cell Genet 14:63-75 https://doi.org/10.1159/000130319
  42. Sohn SH, Cho EJ, Son WJ, Lee CY 2007 Diagnosis of bovine freemartinism by fluorescence in situ hybridization on interphase nuclei using a bovine Y chromosome-specific DNA probe. Theriogenology 68:1003-1011 https://doi.org/10.1016/j.theriogenology.2007.06.022
  43. Swanberg SE, Delany ME, 2003 Dynamics of telomere erosion in transformed and non-transformed avian cells in vitro. Cytogenet Genome Res 102:318-325 https://doi.org/10.1159/000075769
  44. Tamashiro KL, Wakayama T, Blanchard RJ, Blanchard DC, Yanagimachi R 2000 Postnatal growth and behavioral development of mice cloned from adult cumulus cells. Biol Reprod 63:328-334 https://doi.org/10.1095/biolreprod63.1.328
  45. Taylor HA, Delany ME 2000 Ontogeny of telomerase in chicken:Impact of down regulation on pre- and postnatal telomere length in vivo. Dev Growth Differ 42:613-621 https://doi.org/10.1046/j.1440-169x.2000.00540.x
  46. te Velde ER, Pearson PL 2002 The variability of female reproductive ageing. Hum Reprod Update 8:141-154 https://doi.org/10.1093/humupd/8.2.141
  47. Tian XC, Xu J, Yang X 2000 Normal telomere lengths found in cloned cattle. Nat Genet 20:272-273 https://doi.org/10.1038/81559
  48. Volarcik K, Sheean L, Goldfarb J, Woods L, Abdul-Karim FW, Hunt P 1998 The meiotic competence of in-vitro matured human oocytes is influenced by donor age: evidence that folliculogenesis is compromised in the reproductively aged ovary. Hum Reprod 13:154-160 https://doi.org/10.1093/humrep/13.1.154
  49. Wells D, Delhanty JD 2000 Comprehensive chromosomal analysis of human preimplantation embryos using whole genome amplification and single cell comparative genomic hybridization. Mol Hum Reprod 6:1055-1062 https://doi.org/10.1093/molehr/6.11.1055
  50. Wilcox AJ, Weinberg CR, O'Connor JF, Baird DD, Schlatterer JP, Canfield RE, Armstrong EG, Nisula BC 1988 Incidence of early loss of pregnancy. N Engl J Med 319:189-194 https://doi.org/10.1056/NEJM198807283190401
  51. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH 1997 Viable offspring derived from fetal and adult mammalian cells. Nature 385:810-813 https://doi.org/10.1038/385810a0
  52. Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW 1996 Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 18(2):173-179 https://doi.org/10.1002/(SICI)1520-6408(1996)18:2<173::AID-DVG10>3.0.CO;2-3
  53. Yilmaz-Dikmen B, Sahan U 2009 The relationship among age, yolk fatty acids content, and incubation results of broiler breeders. Poult Sci 88(1):185-190 https://doi.org/10.3382/ps.2008-00068
  54. Zakian VA 1995 Telomeres:beginning to understand the end. Sci 270:1601-1607 https://doi.org/10.1126/science.270.5242.1601
  55. 김영주 2008 닭의 텔로미어 함량 분석을 이용한 연령예측지표 개발. 진주산업대학교 석사학위 졸업 논문
  56. 백규흠 이철영 상병돈 최철환 김학규 손시환 2003 한국재래계의 염색체 분염 표지 분석. 한국동물자원과학회지 45(1):1-12 https://doi.org/10.5187/JAST.2003.45.1.001
  57. 손시환 류은경 백규흠 2000 닭 초기배자로부터 염색체 분리기법의 개발 : Ethidium bromide를 이용한 고정도 염색체의 유도. 한국동물자원과학회지 42:157-164
  58. 손시환 오봉국 1987 닭(Gallus domesticus) 염색체의 수 및 형태적 고찰. 한국축산학회지 29(12):524-531
  59. 손시환 정현진 최덕순 2008. 양적형광접합보인법(Q-FISH)에 의한 돼지 백혈구 세포의 텔로미어 함량 분석. 한국동물자원과학회지 50:465-474 https://doi.org/10.5187/JAST.2008.50.4.465
  60. 오희정 손시환 최성복 정선부 정일정 1993 가금류 초기배자의 염색체 이상양상과 빈도. 한국축산학회지 35:363-369
  61. 정길선 조은정 최덕순 이민정 박철 전익수 손시환 2006 한국 재래닭의 주령별 각 조직의 텔로미어 함량과 텔로머레이스 활성도 분석. 한국가금학회지 33(2):97-103
  62. 조은정 최철환 손시환 2005 닭의 발생 단계별 세포내 telomere의 양적 분포양상과 telomerase 활성도 분석. 한국동물자원과학회지 47(2):187-194 https://doi.org/10.5187/JAST.2005.47.2.187
  63. 최덕순 조창연 손시환 2008 소의 생리적 특성에 따른 세포내 텔로미어 함량과 텔로머레이스 활성도 분석. 한국동물자원과학회지 50:445-456 https://doi.org/10.5187/JAST.2008.50.4.445

Cited by

  1. Inheritance and Heritability of Telomere Length in Chicken vol.41, pp.3, 2014, https://doi.org/10.5536/KJPS.2014.41.3.217