수직 다공벽을 이용한 초음속 공동 압력진동의 피동제어

Passive Control of the Supersonic Cavity Pressure Oscillations Using Porous Vertical Barrier

  • 발행 : 2009.06.30

초록

본 논문에서는 초음속 공동유동에서 발생하는 압력진동에 미치는 수직 다공벽의 영향을 조사하기 위하여 수치해석적 연구를 수행하였다. 본 연구에서는 2차원 사각공동내부에 수직다공벽을 설치하여, 기류 마하수를 1.50, 1.83, 2.50로 변화시켰으며, 다공벽의 기공율을 변화시켰다. 수치계산에서는 2차원 비정상 압축성 Navier-Stokes 방정식을 수치적으로 풀기 위하여, TVD 유한 차분 MUSCL법을 사용하였다. 본 수치계산 결과에 의하면, 본 연구에서 적용된 수직 다공벽은 공동 상류단에 발생하는 비정상 전단층의 특성을 상당히 변화시켰으며, 공동내부에서 발생하는 압력진동을 크게 줄이는 것으로 알려졌다. 이와 같은 수직다공벽을 이용한 피동제어 효과는 기류마하수 그리고 다공벽의 기공율에 의존하는 것으로 나타났다.

A computational study has been performed out to evaluate the effect of a vertical porous barrier on the pressure oscillations in a supersonic cavity. The porous barriers with different perforations were vertically installed into a rectangular cavity at Mach numbers 1.50, 1.83 and 2.50. TVD finite difference MUSCL scheme was employed to solve the two-dimensional, unsteady, compressible Navier-Stokes equations. The present vertical porous barrier considerably altered the characteristics of the time-dependent shear layers that occur at the upstream edge of cavity and remarkably reduced the pressure oscillations inside the supersonic cavity. The present results showed that the effectiveness of passive control using the present porous vertical barrier is dependent on Mach number and the perforation of the porous barrier.

키워드

참고문헌

  1. Krishnamurty, K., 'Acoustic Radiation from two Dimensional Rectangular Cutouts in Aerodynamic Surfaces,' NACA TN-3487, 1955
  2. Roshko, A., 'Some Measurements of Flow in a Rectangular Cutout,' NACA TN-3488, 1955
  3. Rossiter, J. E., 'Wind-tunnel Experiments on the Flow over Rectangular Cavities at Subsonic and Transonic Speeds,' Aeronautical Research Council RM-3438, 1964
  4. Heller, H. H., Bliss, D. B., 'The Physical Mechanism of Flow-Induced Pressure Fluctuations in Cavities and Concepts for their Suppression,' AIAA Paper, 1975, pp.75-491
  5. Shaw, L., Clark, R., Talmadge, D., "F-111 Generic Weapons Bay Acoustic Environment," Journal of Aircraft, Vol.25, No.2, 1988, pp.147-153 https://doi.org/10.2514/3.45555
  6. Jeng, Y. N., Payne, U. J., 'Numerical Study of a Supersonic Open Cavity Flow and Pressure Oscillation Control,' Journal of Aircraft, Vol.32, No.2, 1995
  7. Lee, Y. K., Kang, M. S., Kim, H. D., Setoguchi, T., 'Passive Control Techniques to Alleviate Supersonic Cavity Flow Oscillation,' AIAA Journal, Vol.24, No.4, 2008, pp.697-703 https://doi.org/10.2514/1.30292
  8. Setoguchi, T., Alam, M. M., Matsuo, S., Teramoto, K., and Yu, S., 'A Numerical Study on Passive Control of Cavityinduced Pressure Fluctuations in Two-dimensional Supersonic Flow,' International Journal of Turbo and Jet Engines, Vol.23, No.3, 2006, pp.155-164
  9. Goldberg, U. C., 'Toward a Pointwise Turbulence Model for Wall-bounded and Free Shear Flows,' Journal of Fluids Engineering, Vol.116, 1994, pp.72-76 https://doi.org/10.1115/1.2910245
  10. Yee, H. C., 'A Class of High-resolution Explicit and Implicit Shock Capturing Methods,' NASA TM-89464, 1989
  11. Zhang, X., Edwards, J. A., 'An Investigation of Supersonic Oscillatory Cavity Flows Driven by Thick Shear,' Aeronautical Journal, Vol.94, 1990, pp.355-364
  12. Takakura, Y., Suzuki, T., Higashino, F., 'Numerical Study on Supersonic Internal Cavity Flows: What causes the pressure fluctuations?,' Aerospace sciences meeting, 1999, pp.11-14
  13. Nishioka, M., Asai, T., Sakaue, S., Shirai, K., 'Some Thoughts on the Mechanism of Supersonic Cavity Flow Oscillation, Part2 A New Formula for the Oscillation Frequency,' Journal of Japan Society of Fluid Mechanics, Vol.21, No.4, 2002, pp.368-378