References
- Angsupanich, K. and Ledward, D. A. (1998) High pressure treatment effects on cod (Gadus morhua) muscle. Food Chem. 63, 39-50 https://doi.org/10.1016/S0308-8146(97)00234-3
- Cheah, P. B. and Ledward, D. A. (1996) Inhibition of metmyoglobin formation in fresh beef by pressure treatment. Meat Sci. 45, 411-418 https://doi.org/10.1016/S0309-1740(96)00112-X
- Chevalier, D., Sentissi, M., Havet, M., and Lebail, A. (2000) Comparison of air-blast and pressure shift freezing on norway lobster quality. J. Food Sci. 65, 329-333 https://doi.org/10.1111/j.1365-2621.2000.tb16002.x
- Farouk, M. M., Wieliczko, K. J., and Merts, I. (2003) Ultrafast freezing and low storage temperatures are not necessary to maintain the functional properties of manufacturing beef. Meat Sci. 66, 171-179 https://doi.org/10.1016/S0309-1740(03)00081-0
- Fennema, O. R. (1973) Nature of freezing process. In: Low temperature preservation of foods and living matter. Fennema, O. R., Powrie, W. D., and Marth, E. H. (eds), Marcel Dekker Inc., New York, pp. 151-222
- Fernandez,-Martin, F., Otero, L., Solas, M. T., and Sanz, P. D. (2000) Protein denaturation and structural damage during high-pressure-shift freezing of porcine and bovine muscle. J. Food Sci. 65, 1002-1008 https://doi.org/10.1111/j.1365-2621.2000.tb09407.x
- Hamm, R., Gottesmann, P. und Kijowski, J. (1982) Einfrieren und Auftauen von Fleisch; Einfluesse auf Muskel Gewgbe und Tausaft Bildung; Fleischwirtsch. 62, 983-991
- Hong, G. P., Ko, S. H., Choi, M. J., and Min, S. G. (2007) Effect of pressure assisted freezing on physicochemical properties of pork. Korean J. Food Sci. Ani. Resour. 27, 190-196 https://doi.org/10.5851/kosfa.2007.27.2.190
- Hong, G. P., Park, S. H., Kim, J. Y., Lee, S. K., and Min, S. G. (2005) Effects of time-dependent high pressure treatment on physico-chemical properties of pork. Food Sci. Biotechnol. 14, 808-812
- Ikeuchi, Y., Tanji, H., Kim, K., and Suzuki, A. (1992) Mechanism of heat-induced gelation of pressurized actomyosin: Pressure-induced changes in actin and myosin in actomyosin. J. Agric. Food Chem. 40, 1756-1761 https://doi.org/10.1021/jf00022a006
- Jung, S., Ghoul, M., and De Lamballerie-Anton, M. (2003) Influence of high pressure on the color and microbial quality of beef meat. Lebensm. –Wiss. u. -Technol. 36, 625-631 https://doi.org/10.1016/S0023-6438(03)00082-3
- Kalichevsky, M. T., Ablett S., Lillford, P., Knorr, D. (2000) Effects of pressure-shift freezing and conventional freezing on model food gels. Int. J. Food Sci. Technol. 35, 163-172 https://doi.org/10.1046/j.1365-2621.2000.00288.x
- Karino, S., Hane, H., and Makita, T. (1994) Behavior of water and ice at low temperature and high pressure. In: High pressure bioscience. Hayashi, R., Kunugi, S., Shimada, S., Suzuki, A. (eds), San-Ei Suppan Co., Kyoto, pp. 2-9
- Knorr, D., Heinz, V., and Buckow, R. (2006) High pressure application for food biopolymers. Biochim. Biophys. Acta. 1764, 619-631 https://doi.org/10.1016/j.bbapap.2006.01.017
- Knorr, D., Schlüter, O., and Heinz, V. (1998) Impact of high hydrostatic pressure on phase transitions of foods. Food Technol. 52, 42-45
- Ko, S. H., Hong, G. P., Park, S. H., Choi, M. J., and Min, S. G. (2006) Studies on physical properties of pork frozen by various high pressure freezing process. Korean J. Food Sci. Ani. Resour. 26, 464-470
- Lakshmanam, R., Miskin, D., and Piggott, J. R. (2005) Quality of vacuum packed cold-smoked salmon during refrigerated storage as affected by high-pressure processing. J. Sci. Food Agric. 85, 655-661 https://doi.org/10.1002/jsfa.1972
- Otero, P., and Sanz, P. D. (2006) High-pressure-shift freezing : Main factors implied in the phase transition time. J. Food Eng. 72, 354-363 https://doi.org/10.1016/j.jfoodeng.2004.12.015
- Schubring, R., Meyer, C., Schluter, O., Boguslawski, S., Knorr, D. (2003) Impact of high pressure assisted thawing on the quality of fillets from various fish species. Innov. Food Sci. Emerg. 4, 257-267 https://doi.org/10.1016/S1466-8564(03)00036-5
- Smeller, L. (2002) Pressure-temperature phase diagrams of biomolecules. Biochim. Biophys. Acta. 1595, 11-29 https://doi.org/10.1016/S0167-4838(01)00332-6
- Zhu, S., Le Bail, A., Ramaswamy, H. S., and Chapleau, N. (2004) Characterization of ice crystals in pork muscle formed by pressure-shift freezing as compared with classical freezing methods. J. Food Sci. 69, 190-197 https://doi.org/10.1111/j.1365-2621.2004.tb06346.x
Cited by
- Effects of Microwave Thawing Conditions on the Physicochemical Characteristics of Frozen Rice vol.18, pp.4, 2014, https://doi.org/10.13050/foodengprog.2014.18.4.366
- Effects of Freezing and Thawing Treatments on Natural Microflora, Inoculated Listeria monocytogenes and Campylobacter jejuni on Chicken Breast vol.31, pp.1, 2016, https://doi.org/10.13103/JFHS.2016.31.1.42
- Thermal characterization and ice crystal analysis in pressure shift freezing of different muscle (shrimp and porcine liver) versus conventional freezing method vol.26, 2014, https://doi.org/10.1016/j.ifset.2014.05.006
- A Review of Novel and Innovative Food Freezing Technologies vol.8, pp.8, 2015, https://doi.org/10.1007/s11947-015-1542-8
- Effect of Thawing Methods and Storage Time on Physicochemical Characteristic and Fatty Acid and Amino Acid Content of Frozen Duck Meat vol.46, pp.4, 2009, https://doi.org/10.5536/kjps.2019.46.4.223