DOI QR코드

DOI QR Code

Effect of High Pressure Freezing and Thawing Process on the Physical Properties of Pork

초고압 동결 및 해동방법이 돈육의 물리적 특성에 미치는 효과

  • Shim, Kook-Bo (Animal Resources Research Center, College of Animal Bioscience and Technology, Konkuk University) ;
  • Hong, Geun-Pyo (Animal Resources Research Center, College of Animal Bioscience and Technology, Konkuk University) ;
  • Choi, Mi-Jung (Animal Resources Research Center, College of Animal Bioscience and Technology, Konkuk University) ;
  • Min, Sang-Gi (Animal Resources Research Center, College of Animal Bioscience and Technology, Konkuk University)
  • 심국보 (건국대학교 동물생명과학대학 동물자원연구센터) ;
  • 홍근표 (건국대학교 동물생명과학대학 동물자원연구센터) ;
  • 최미정 (건국대학교 동물생명과학대학 동물자원연구센터) ;
  • 민상기 (건국대학교 동물생명과학대학 동물자원연구센터)
  • Published : 2009.12.31

Abstract

This study was conducted to investigate the effect of various high pressure freezing and thawing treatments on the physical properties of pork. To compare the effects of the freezing and thawing process on meat quality, atmospheric freezing followed by running water thawing (AFRT), pressure shift freezing followed by running water thawing (SFRT), and pressure shift freezing and pressure assisted thawing (SFAT) were conducted at pressure of 250 MPa and cooling temperature of $-22^{\circ}C$. SAFT and SFRT showed a shorter phase transition time and total thawing time than AFRT. The pH value of treated samples increased significantly (p<0.05) compared to unfrozen meat. In addition, SFAT and SFRT showed a higher pHvalue than AFRT. Although the water holding capacity was significantly decreased (p<0.05) for SFAT and SFRT, SFRT reduced drip loss. In regards to color, SFAT and SFRT resulted in a significant increase in color parameters (p<0.05) relative to AFRT, while SFAT produced a higher L*-value. High pressure treatment significantly increased shear force (p<0.05) compared to AFRT, and, where SFRT showed the highest shear force. Therefore, these combined results indicated that the hydrostatic pressure treatment improved the functional properties of pork and increased the freezing and thawing rate.

본 실험은 초고압 동결 및 해동기법이 돈육의 이화학적 특성에 미치는 효과를 규명하고자 시도하였다. 동결 및 해동처리 과정에서 가압에 따른 pH 증가 및 단백질 변성에 따른 보수력의 저하로 관찰되었지만, 초고압 동결 기법을 이용함으로써 효과적으로 해동 및 가열감량을 최소화할 수 있었다. 반면에 초고압 해동기법은 느린 해동속도에 기인한 얼음 재결정화로 해동육의 수율 측면에 영향을 미칠것으로 판단되었다. 따라서 초고압 동결처리에 의한 빠른 동결 및 빠른 해동처리를 통하여 돈육의 물리적 특성 저하를 최소화할 수 있을 것으로 간주되었다. 반면에 250 MPa의 압력은 돈육의 색도에 부정적인 영향을 미치는 것으로 나타났다.

Keywords

References

  1. Angsupanich, K. and Ledward, D. A. (1998) High pressure treatment effects on cod (Gadus morhua) muscle. Food Chem. 63, 39-50 https://doi.org/10.1016/S0308-8146(97)00234-3
  2. Cheah, P. B. and Ledward, D. A. (1996) Inhibition of metmyoglobin formation in fresh beef by pressure treatment. Meat Sci. 45, 411-418 https://doi.org/10.1016/S0309-1740(96)00112-X
  3. Chevalier, D., Sentissi, M., Havet, M., and Lebail, A. (2000) Comparison of air-blast and pressure shift freezing on norway lobster quality. J. Food Sci. 65, 329-333 https://doi.org/10.1111/j.1365-2621.2000.tb16002.x
  4. Farouk, M. M., Wieliczko, K. J., and Merts, I. (2003) Ultrafast freezing and low storage temperatures are not necessary to maintain the functional properties of manufacturing beef. Meat Sci. 66, 171-179 https://doi.org/10.1016/S0309-1740(03)00081-0
  5. Fennema, O. R. (1973) Nature of freezing process. In: Low temperature preservation of foods and living matter. Fennema, O. R., Powrie, W. D., and Marth, E. H. (eds), Marcel Dekker Inc., New York, pp. 151-222
  6. Fernandez,-Martin, F., Otero, L., Solas, M. T., and Sanz, P. D. (2000) Protein denaturation and structural damage during high-pressure-shift freezing of porcine and bovine muscle. J. Food Sci. 65, 1002-1008 https://doi.org/10.1111/j.1365-2621.2000.tb09407.x
  7. Hamm, R., Gottesmann, P. und Kijowski, J. (1982) Einfrieren und Auftauen von Fleisch; Einfluesse auf Muskel Gewgbe und Tausaft Bildung; Fleischwirtsch. 62, 983-991
  8. Hong, G. P., Ko, S. H., Choi, M. J., and Min, S. G. (2007) Effect of pressure assisted freezing on physicochemical properties of pork. Korean J. Food Sci. Ani. Resour. 27, 190-196 https://doi.org/10.5851/kosfa.2007.27.2.190
  9. Hong, G. P., Park, S. H., Kim, J. Y., Lee, S. K., and Min, S. G. (2005) Effects of time-dependent high pressure treatment on physico-chemical properties of pork. Food Sci. Biotechnol. 14, 808-812
  10. Ikeuchi, Y., Tanji, H., Kim, K., and Suzuki, A. (1992) Mechanism of heat-induced gelation of pressurized actomyosin: Pressure-induced changes in actin and myosin in actomyosin. J. Agric. Food Chem. 40, 1756-1761 https://doi.org/10.1021/jf00022a006
  11. Jung, S., Ghoul, M., and De Lamballerie-Anton, M. (2003) Influence of high pressure on the color and microbial quality of beef meat. Lebensm. –Wiss. u. -Technol. 36, 625-631 https://doi.org/10.1016/S0023-6438(03)00082-3
  12. Kalichevsky, M. T., Ablett S., Lillford, P., Knorr, D. (2000) Effects of pressure-shift freezing and conventional freezing on model food gels. Int. J. Food Sci. Technol. 35, 163-172 https://doi.org/10.1046/j.1365-2621.2000.00288.x
  13. Karino, S., Hane, H., and Makita, T. (1994) Behavior of water and ice at low temperature and high pressure. In: High pressure bioscience. Hayashi, R., Kunugi, S., Shimada, S., Suzuki, A. (eds), San-Ei Suppan Co., Kyoto, pp. 2-9
  14. Knorr, D., Heinz, V., and Buckow, R. (2006) High pressure application for food biopolymers. Biochim. Biophys. Acta. 1764, 619-631 https://doi.org/10.1016/j.bbapap.2006.01.017
  15. Knorr, D., Schlüter, O., and Heinz, V. (1998) Impact of high hydrostatic pressure on phase transitions of foods. Food Technol. 52, 42-45
  16. Ko, S. H., Hong, G. P., Park, S. H., Choi, M. J., and Min, S. G. (2006) Studies on physical properties of pork frozen by various high pressure freezing process. Korean J. Food Sci. Ani. Resour. 26, 464-470
  17. Lakshmanam, R., Miskin, D., and Piggott, J. R. (2005) Quality of vacuum packed cold-smoked salmon during refrigerated storage as affected by high-pressure processing. J. Sci. Food Agric. 85, 655-661 https://doi.org/10.1002/jsfa.1972
  18. Otero, P., and Sanz, P. D. (2006) High-pressure-shift freezing : Main factors implied in the phase transition time. J. Food Eng. 72, 354-363 https://doi.org/10.1016/j.jfoodeng.2004.12.015
  19. Schubring, R., Meyer, C., Schluter, O., Boguslawski, S., Knorr, D. (2003) Impact of high pressure assisted thawing on the quality of fillets from various fish species. Innov. Food Sci. Emerg. 4, 257-267 https://doi.org/10.1016/S1466-8564(03)00036-5
  20. Smeller, L. (2002) Pressure-temperature phase diagrams of biomolecules. Biochim. Biophys. Acta. 1595, 11-29 https://doi.org/10.1016/S0167-4838(01)00332-6
  21. Zhu, S., Le Bail, A., Ramaswamy, H. S., and Chapleau, N. (2004) Characterization of ice crystals in pork muscle formed by pressure-shift freezing as compared with classical freezing methods. J. Food Sci. 69, 190-197 https://doi.org/10.1111/j.1365-2621.2004.tb06346.x

Cited by

  1. Effects of Microwave Thawing Conditions on the Physicochemical Characteristics of Frozen Rice vol.18, pp.4, 2014, https://doi.org/10.13050/foodengprog.2014.18.4.366
  2. Effects of Freezing and Thawing Treatments on Natural Microflora, Inoculated Listeria monocytogenes and Campylobacter jejuni on Chicken Breast vol.31, pp.1, 2016, https://doi.org/10.13103/JFHS.2016.31.1.42
  3. Thermal characterization and ice crystal analysis in pressure shift freezing of different muscle (shrimp and porcine liver) versus conventional freezing method vol.26, 2014, https://doi.org/10.1016/j.ifset.2014.05.006
  4. A Review of Novel and Innovative Food Freezing Technologies vol.8, pp.8, 2015, https://doi.org/10.1007/s11947-015-1542-8
  5. Effect of Thawing Methods and Storage Time on Physicochemical Characteristic and Fatty Acid and Amino Acid Content of Frozen Duck Meat vol.46, pp.4, 2009, https://doi.org/10.5536/kjps.2019.46.4.223