DOI QR코드

DOI QR Code

Biofilm Formation and Low pH Viability of Cronobacter spp. (Enterobacter sakazakii) Isolated from Powdered Infant Formula and Infant Foods in Korea

국내 분유 및 영.유아식품에서 분리된 Cronobacter spp. (Enterobacter sakazakii)의 Biofilm 생성 특성 및 내산성 비교

  • Kim, Sun-Ae (Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Yu-Mi (Technical Laboratory, Givaudan Korea) ;
  • Oh, Se-Wook (Food Safety Research Group, Division for Food Industry Platform Technology, Korea Food Research Institute) ;
  • Gwak, Hyo-Sun (Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation) ;
  • Hwang, In-Gyun (Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation) ;
  • Kang, Dong-Hyun (Department of Food Science and Human Nutrition, Washington State University) ;
  • Woo, Gun-Jo (Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Rhee, Min-Suk (Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University)
  • 김선애 (고려대학교 생명과학대학 생명공학과) ;
  • 이유미 ;
  • 오세욱 (한국식품연구원 산업원천기술연구본부 안전성연구단) ;
  • 곽효선 (식품의약품 안전평가원 식품위해평가부 미생물과) ;
  • 황인균 (식품의약품 안전평가원 식품위해평가부 미생물과) ;
  • 강동현 (워싱턴 주립대학교) ;
  • 우건조 (고려대학교 생명과학대학 생명공학과) ;
  • 이민석 (고려대학교 생명과학대학 생명공학과)
  • Published : 2009.12.31

Abstract

We investigated biofilm formation in various media, growth in low pH, and the hemolytic activity of 14 strains of Cronobacter spp. (Enterobacter sakazakii) isolated from a variety of foods including powdered infant formula (n=75), infant cereal (n=100), honey (n=30), and other infant foods (n=100) in Korea. The Cronobacter spp. adhered and formed biofilms on polyethylene, and a greater extent of biofilm was observed in nutrient-rich media. No clear difference in biofilm-forming ability was noted among the media constituents and the pattern of biofilm formation was strain-dependent. Seven strains out of 14 strains (50%) grew at pH 4.1, indicating that the acid resistance of these Cronobacter spp. isolated in Korea was relatively low. Hemolytic activity was not observed in any of the strains. This study provides basic information for the physiological and biochemical characteristics of Cronobacter spp. isolated from a variety of infant foods in Korea.

본 연구는 국내에서 시판되고 있는 분유 및 영 유아식품에서 분리한 Cronobacter spp.(Enterobacter sakazakii) 14개 균주의 biofilm 생성 능력, 산성 환경에서의 생장, 용혈성을 관찰하였다. 연구 결과, 14개의 분리균주는 polyethylene에서 biofilm을 생성하였으며 영양성분이 풍부할수록 biofilm을 강하게 생성하였다. 영양성분의 종류에 따른 biofilm 생성 능력 차이는 뚜렷한 경향을 나타내지 않았으며, Cronobacter spp.의 biofilm 생성 능력은 균주별 특성에 의한 것으로 판단된다. 다양한 pH 환경에서 생장 특성을 관찰한 결과, 14개 중 7개의 균주(50%)가 pH 4.1에서도 생장할 수 있어 국외 균주에 비해 내산성이 비교적 낮게 나타났다. 한편 분리된 모든 균주에서 용혈성은 관찰되지 않았다. 본 연구는 국내 영 유아용 식품에서 분리된 Cronobacter spp.의 생리 생화학적 특성을 제시하였으며 이는 향후 Cronobacter spp. 연구 및 관련 식품산업의 저감화 기술 개발에 기초 자료로 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Albesa, I., Becerra, M. C., Battan, P. C., and Paez, P. L. (2004) Oxidative stress involved in the antibacterial action of different antibiotics. Biochem. Biophys. Res. Commun. 317, 605-609 https://doi.org/10.1016/j.bbrc.2004.03.085
  2. Arseni, A., Malamou-Ladas, E., Koutsia, C., Xanthou, M., and Trikka, E. (1987) Outbreak of colonization of neonates with Enterobacter sakazakii. J. Hosp. Infect. 9, 143-150 https://doi.org/10.1016/0195-6701(87)90052-1
  3. Bar-Oz, B., Preminger, A., Peleg, O., Block, C., and Arad, I. (2001) Enterobacter sakazakii infection in the newborn. Acta Paediatr. 90, 356-358 https://doi.org/10.1080/08035250117999
  4. Biering, G., Karlsson, S., Clark, N. C., Jonsdottir, K. E., Ludvigsson, P., and Steingrimsson, O. (1989) Three cases of neonatal meningitis caused by Enterobacter sakazakii in powdered milk. J. Clin. Microbiol. 27, 2054-2056
  5. Braun, V., Gunther, H., NeuB, B., and Tautz, C. (1985) Hemolytic activity of Serratia marcescens. Arch. Microbiol. 141, 371-376 https://doi.org/10.1007/BF00428852
  6. Burdette, J. H. and Santos, C. (2000) Enterobacter sakazakii brain abscess in the neonate: the importance of neuroradiologic imaging. Pediatr. Radiol. 30, 33-34 https://doi.org/10.1007/s002470050009
  7. Cabassi, C. S., Taddei, S., Predari, G., Galvani, G., Ghidini, F., Schiano, E., and Cavirani, S. (2004) Bacteriologic findings in ostrich (Struthio camelus) eggs from farms with reproductive failures. Avian Dis. 48, 716-722 https://doi.org/10.1637/7142
  8. Castonguay, M. H., van der Schaaf, S., Koester, W., Krooneman, J., van der Meer, W., Harmsen, H., and Landini, P. (2006) Biofilm formation by Escherichia coli is stimulated by synergistic interactions and co-adhesion mechanisms with adherence-proficient bacteria. Res. Microbiol. 157, 471- 478 https://doi.org/10.1016/j.resmic.2005.10.003
  9. Chang, W. S. and Halverson, L. J. (2003) Reduced water availability influences the dynamics, development, and ultrastructural properties of Pseudomonas putida biofilms. J. Bacteriol. 185, 6199-6204 https://doi.org/10.1128/JB.185.20.6199-6204.2003
  10. Dancer, G. I., Mah, J. H., and Kang, D. H. (2009) Influences of milk components on biofilm formation of Cronobacter spp. (Enterobacter sakazakii). Lett. Appl. Microbiol. 48, 718-725 https://doi.org/10.1111/j.1472-765X.2009.02601.x
  11. Edelson-Mammel, S., Porteous, M. K., and Buchanan, R. L. (2006) Acid resistance of twelve strains of Enterobacter sakazakii, and the impact of habituating the cells to an acidic environment. J. Food Sci. 71, 201-207 https://doi.org/10.1111/j.1750-3841.2006.00101.x
  12. Edelson-Mammel, S. G., Porteous, M. K., and Buchanan, R. L. (2005) Survival of Enterobacter sakazakii in a dehydrated powdered infant formula. J. Food Prot. 68, 1900-1902 https://doi.org/10.4315/0362-028X-68.9.1900
  13. El-Sharoud, W. M., El-Din, M. Z., Ziada, D. M., Ahmed, S. F., and Klena, J. D. (2008) Surveillance and genotyping of Enterobacter sakazakii suggest its potential transmission from milk powder into imitation recombined soft cheese. J. Appl. Microbiol. 105, 559-566 https://doi.org/10.1111/j.1365-2672.2008.03777.x
  14. Finlay, B. B. and Falkow, S. (1989) Common themes in microbial pathogenicity. Microbiol. Mol. Biol. Rev. 53, 210-230
  15. Food and Agriculture Organization-World Health Organization (FAO/WHO) (2004) Enterobacter sakazakii and other microorganisms in powdered infant formula; meeting report. Microbiological risk assessment series 6. World Health Oragnization-Food and Agriculture Organization of the United Nations, Geneva and Rome. WHO press, Geneva, Switzerland. http://www.who.int/foodsafety/publications/micro/mra6/en/
  16. Food and Agriculture Organization-World Health Organization (FAO/WHO) (2006) Enterobacter sakazakii and Salmonella in powdered infant formula; meeting report. Microbiological risk assessment series 10. World Health Oragnization-Food and Agriculture Organization of the United Nations, Geneva and Rome. WHO press, Geneva, Switzerland. http://www.who.int/foodsafety/publications/micro/mra10/en/
  17. Gassem, M. A. A. (1999) Study of the micro-organisms associated with the fermented bread (khamir) produced from sorghum in Gizan region, Saudi Arabia. J. Appl. Microbiol. 86, 221-225 https://doi.org/10.1046/j.1365-2672.1999.00648.x
  18. Himelright, I., Harris, E., Lorch, V., Anderson, M., Jones, T., Craig, A., Kuehnert, M., Forster, T., Arduino, M., Jensen, B., and Jernigan, D. (2002) Enterobacter sakazakii infections associated with the use of powdered infant Formula - Tennessee, 2001 (Reprinted from MMWR, vol 51, pp 297-300, 2002). JAMA 287, 2204-2205 https://doi.org/10.1001/jama.287.17.2204
  19. Holland, I. B., Kenny, B., and Blight, M. (1990) Haemolysin secretion from E. coli. Biochimie 72, 131-141 https://doi.org/10.1016/0300-9084(90)90138-7
  20. Hoyle, B. D. and Costerton, J. W. (1991) Bacterial resistance to antibiotics: The role of biofilms. Prog. Drug. Res. 37, 91-105
  21. Hwang, J. H., Lee, J. Y., and Park, J. H. (2008) Microbiological quality and potential pathogen monitoring for powdered infant formulas from the local market. Korean J. Food Sci. Ani. Resour. 28, 555-561 https://doi.org/10.5851/kosfa.2008.28.5.555
  22. Iversen, C. and Forsythe, S. (2004) Isolation of Enterobacter sakazakii and other Enterobacteriaceae from powdered infant formula milk and related products. Food Microbiol. 21, 771-777 https://doi.org/10.1016/j.fm.2004.01.009
  23. Iversen, C., Lane, M., and Forsythe, S. J. (2004) The growth profile, thermotolerance and biofilm formation of Enterobacter sakazakii grown in infant formula milk. Lett. Appl. Microbiol. 38, 378-382 https://doi.org/10.1111/j.1472-765X.2004.01507.x
  24. Iversen, C., Lehner, A., Mullane, N., Bidlas, E., Cleenwerck, I., Marugg, J., Fanning, S., Stephan, R., and Joosten, H. (2007) The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evol. Biol. 7, 64 https://doi.org/10.1186/1471-2148-7-64
  25. Jang, H. I. and Rhee, M. S. (2009) Inhibitory effect of caprylic acid and mild heat on Cronobacter spp. (Enterobacter sakazakii) in reconstituted infant formula and determination of injury by flow cytometry. Int. J. Food Microbiol. 133, 113-120 https://doi.org/10.1016/j.ijfoodmicro.2009.05.009
  26. Joseph, L. A. and Wright, A. C. (2004) Expression of Vibrio vulnificus capsular polysaccharide inhibits biofilm formation. J. Bacteriol. 186, 889-893 https://doi.org/10.1128/JB.186.3.889-893.2004
  27. Jung, M. K. and Park, J. H. (2006) Prevalence and thermal stability of Enterobacter sakazakii from unprocessed readyto- eat agricultural products and powdered infant formulas. Food Sci. Biotechnol. 15, 152-157
  28. Kandhai, M. C., Reij, M. W., Gorris, L. G., Guillaume-Gentil, O., and van Schothorst, M. (2004) Occurrence of Enterobacter sakazakii in food production environments and households. Lancet 363, 39-40 https://doi.org/10.1016/S0140-6736(03)15169-0
  29. Koutsoumanis, K. P., Kendall, P. A., and Sofos, J. N. (2004) Modeling the boundaries of growth of Salmonella Typhimurium in broth as a function of temperature, water activity, and pH. J. Food Prot. 67, 53-59 https://doi.org/10.4315/0362-028X-67.1.53
  30. Kumar, C. G. and Anand, S. K. (1998) Significance of microbial biofilms in food industry: a review. Int. J. Food Microbiol. 42, 9-27 https://doi.org/10.1016/S0168-1605(98)00060-9
  31. Lafarge, V., Ogier, J. C., Girard, V., Maladen, V., Leveau, J. Y., Gruss, A., and Delacroix-Buchet, A. (2004) Raw cow milk bacterial population shifts attributable to refrigeration. Appl. Environ. Microbiol. 70, 5644-5650 https://doi.org/10.1128/AEM.70.9.5644-5650.2004
  32. Lee, I. S., Lin, J., Hall, H. K., Bearson, B., and Foster, J. W. (1995) The stationary-phase sigma factor $\'{o}$S (RpoS) is required for a sustained acid tolerance response in virulent Salmonella typhimurium. Mol. Microbiol. 17, 155-167 https://doi.org/10.1111/j.1365-2958.1995.mmi_17010155.x
  33. Masaki, H., Asoh, N., Tao, M., Ikeda, H., Degawa, S., Matsumoto, K., Inokuchi, K., Watanabe, K., Watanabe, H., and Oishi, K. (2001) Detection of gram-negative bacteria in patients and hospital environment at a room in geriatric wards under the infection control against MRSA. Kansenshogaku Zasshi. 75, 144-150 https://doi.org/10.11150/kansenshogakuzasshi1970.75.144
  34. Muytjens, H. L. and Kollee, L. A. (1982) Neonatal meningitis due to Enterobacter sakazakii. Tijdschr Kindergeneeskd 50, 110-112
  35. Muytjens, H. L., Roelofs-Willemse, H., and Jaspar, G. H. (1988) Quality of powdered substitutes for breast milk with regard to members of the family Enterobacteriaceae. J. Clin. Microbiol. 26, 743-746
  36. Noriega, F. R., Kotloff, K. L., Martin, M. A., and Schwalbe, R. S. (1990) Nosocomial bacteremia caused by Enterobacter sakazakii and Leuconostoc mesenteroides resulting from extrinsic contamination of infant formula. Pediatr. Infect. Dis. J. 9, 447-449 https://doi.org/10.1097/00006454-199006000-00018
  37. Opal, S. M., Cross, A. S., Gemski, P., and Lyhte, L. W. (1990) Aerobactin and á-hemolysin as virulence determinants in Escherichia coli isolated from human blood, urine, and stool. J. Infect. Dis. 161, 794-796 https://doi.org/10.1093/infdis/161.4.794
  38. Park, J. H., Yoon, S. S., and Park, Y. S. (2008) Growth inhibitory activity of Enterococcus faecium isolated from bovine intestinal tract against Enterobacter sakazakii. Korean J. Food Sci. Ani. Resour. 28, 99-104 https://doi.org/10.5851/kosfa.2008.28.1.99
  39. Presser, K. A., Ross, T., and Ratkowsky, D. A. (1998) Modelling the growth limits (growth/no growth interface) of Escherichia coli as a function of temperature, pH, lactic acid concentration, and water activity. Appl. Environ. Microbiol. 64, 1773-1779
  40. Richard, H. and Foster, J. W. (2004) Escherichia coli glutamate-and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J. Bacteriol. 186, 6032-6041 https://doi.org/10.1128/JB.186.18.6032-6041.2004
  41. Scheepe-Leberkühne, M. and Wagner, F. (1986) Optimization and preliminary characterization of an exopolysaccharide synthezised by Enterobacter sakazakii. Biotechnol. Lett. 8, 695-700 https://doi.org/10.1007/BF01032564
  42. Schembri, M. A., Dalsgaard, D., and Klemm, P. (2004) Capsule shields the function of short bacterial adhesins. J. Bacteriol. 186, 1249-1257 https://doi.org/10.1128/JB.186.5.1249-1257.2004
  43. Simi, S., Carbonell, G. V., Falcon, R. M., Gatti, M. S. V., Joazeiro, P. P., Darini, A. L., and Yano, T. (2003) A low molecular weight enterotoxic hemolysin from clinical Enterobacter cloacae. Can. J. Microbiol. 49, 479 https://doi.org/10.1139/w03-060
  44. Simmons, B. P., Gelfand, M. S., Haas, M., Metts, L., and Ferguson, J. (1989) Enterobacter sakazakii infections in neonates associated with intrinsic contamination of a powdered infant formula. Infect. Control Hosp. Epidemiol. 10, 398- 401 https://doi.org/10.1086/646060
  45. Small, P., Blankenhorn, D., Welty, D., Zinser, E., and Slonczewski, J. (1994) Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J. Bacteriol. 176, 1729-1737 https://doi.org/10.1128/jb.176.6.1729-1737.1994
  46. Soriano, J. M., Rico, H., Molto, J. C., and Manes, J. (2001) Incidence of microbial flora in lettuce, meat and Spanish potato omelette from restaurants. Food Microbiol. 18, 159-163 https://doi.org/10.1006/fmic.2000.0386
  47. Stepanovi , S., irkovi , I., Ranin, L., and Svabic´-Vlahovic, M. (2004) Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett. Appl. Microbiol. 38, 428-432 https://doi.org/10.1111/j.1472-765X.2004.01513.x
  48. Van Acker, J., De Smet, F., Muyldermans, G., Bougatef, A., Naessens, A., and Lauwers, S. (2001) Outbreak of necrotizing enterocolitis associated with Enterobacter sakazakii in powdered milk formula. J. Clin. Microbiol. 39, 293-297 https://doi.org/10.1128/JCM.39.1.293-297.2001
  49. Weir, E. (2002) Powdered infant formula and fatal infection with Enterobacter sakazakii. Can. Med. Assoc. J. 166, 1570- 1570
  50. Willis, J. and Robinson, J. E. (1988) Enterobacter sakazakii meningitis in neonates. Pediatr. Infect. Dis. J. 7, 196-199 https://doi.org/10.1097/00006454-198803000-00012
  51. KFDA (2005) 분유류/영유아용 식품의 미생물 관리. 연구결과보고서

Cited by

  1. Current Cronobacter spp. Researches on Prevalence, Control, and Detection vol.48, pp.4, 2012, https://doi.org/10.7845/kjm.2012.051
  2. Acid stress management by Cronobacter sakazakii vol.178, 2014, https://doi.org/10.1016/j.ijfoodmicro.2014.03.001
  3. Extensive Manipulation of Caseicins A and B Highlights the Tolerance of These Antimicrobial Peptides to Change vol.78, pp.7, 2012, https://doi.org/10.1128/AEM.07312-11
  4. Prevalence and Genetic Diversity of Cronobacter Species Isolated From Four Infant Formula Production Factories in China vol.10, pp.None, 2009, https://doi.org/10.3389/fmicb.2019.01938