Synthesis of Polyester-diol and Exfoliation of Nanoclay through Esterification between Adipic Acid and Diethylene Glycol

Adipic Acid와 Diethylene Glycol의 에스테르 반응을 통한 나노점토의 박리와 폴리에스테르형 디올의 합성

  • Kim, Byung-Ju (Department of Chemical Engineering, Dong-A University) ;
  • Lee, Sang-Ho (Department of Chemical Engineering, Dong-A University)
  • Published : 2009.12.31

Abstract

We synthesized polyester-diol containing Cloisite 30B which is exfoliated during the synthesis. First, esterification was conducted with excess adipic acids and two 2-hydroxyethyl groups of the tertiary ammonium tethered to Cloisite 30B silicate layer. Due to the small molecular size of adipic acid ($d{\approx}3.0\;{\AA}$, $L{\approx}9.3\;{\AA}$), it penetrated into the interlayer of Cloisite 30B, reacted with the 2-hydroxyethyl groups, and produced the tertiary ammonium that has the two ethyl-ester adipic acid groups, one methyl group, and one hydrogenated alkyl group. Through the esterification, the molecular size of the tertiary ammonium increased and as the result, the basal space of Cloisite 30B increased from $18.4\;{\AA}$ to more than $58.3\;{\AA}$. The produced ethyl-ester adipic acid and unreacted adipic acid reacted with excess diethylene glycol ([COOH]/[OH]${\approx}0.6$) to be polyester-diol. The COOH conversion calculated from the acid value of the reactant mixture was 94%. The number average molecular weight and PDI of the produced polyester-diol were 830 g/mol and 1.2, respectively.

Cloisite 30B가 박리, 분산된 폴리에스테르형 디올을 제조하였다. 먼저, Cloisite 30B에 치환된 2-hydroxyethyl기를 가진 4급 암모늄염을 과량의 adipic acid와 혼합하여 $130^{\circ}C$에서 반응시켜, 에스테르기로 연결하고 양말단에 카르복실기를 가지는 ethyl-ester adipic acid 암모늄염으로 만들었다. 이 과정에서 Cloisite 30B의 실리케이트 층간 간격이 $18.4\;{\AA}$ ($2{\theta}=4.9^{\circ}$)에서 $58.3\;{\AA}$ ($2{\theta}=1.5^{\circ}$)보다 넓게 확장되었다. 층간 간격의 확장은 분자크기가 작은 adipic acid($d{\approx}3.0\;{\AA}$, $L{\approx}9.3\;{\AA}$)가 Cloisite 30B의 층간에서 Cloisite 30B의 2-hydroxyethyl기와 반응하여 분자크기가 커졌기 때문이다. Cloisite 30B가 박리/분산된 adipic acid를 과량의 diethylene glycol([COOH]/[OH]${\approx}0.6$)와 혼합하여 $140^{\circ}C$ 에서 반응시킴으로써 diol을 합성하였다. Acid value로 측정한 전환율은 94%였다. 합성한 diol은 수평균분자량이 830 g/mol, PDI가 1.2로, 평균중합도가 약 7.8인 polyester-diol 형태이다.

Keywords

References

  1. M. Q. Zhang, M. Z. Rong, and K. Friedrich, 'Encyclopedia of Nanoscience and Nanotechnology', ed. by H. S. Nalwa, Vol.7, p. 125, American Scientific Publishers, Stevenson Ranch, CA, USA, 2004
  2. G. Woods, 'The ICI Polyurethanes Book', ed. By G. Woods, John Wiley & Sons Inc, New York, 1990
  3. N. M. K. Lamba, K. A. Woodhouse, and S. L. Cooper, 'Polyurethanes in Biomedical Applications', CRC Press, Boca Raton, 1998
  4. H.J. Fabris, 'Advances in Urethane Science and Technology', Technomic Publishing Co, New York, 1976
  5. R. Xu, E. Manias, A. J. Snyder, and J. Runt, 'New Biomedical Poly(urethane urea)-Layered Silicate Nanocomposites', Macromolecules, 34, 337 (2001) https://doi.org/10.1021/ma0013657
  6. M. A. Osman, V , Mittal, M, Morbidelli, and U. W. Suter, 'Polyurethane Adhesive Nanocomposites as Gas Permeation Barrier', Macromolecules, 36, 9851 (2003) https://doi.org/10.1021/ma035077x
  7. T. K. Chen, Y. I. Tien, and K. H. Wei, 'Synthesis and characterization of novel segmented polyurethane/clay Nanocomposites', Polymer, 41, 1345 (2000) https://doi.org/10.1016/S0032-3861(99)00280-3
  8. Y. I. Tien and K. H. Wei, 'Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios', Polymer, 42, 3213 (2001) https://doi.org/10.1016/S0032-3861(00)00729-1
  9. A. Okada and A.Usuki, 'The chemistry of polymer-clay hybrids', Materials science & engineering. C, Biomimetic materials, sensors and systems, 3, 109 (1995) https://doi.org/10.1016/0928-4931(95)00110-7
  10. J. Ma, S. Zhang, and Z. Qi, 'Synthesis and Characterization of Elastomeric Polyurethane/Clay Nanocomposites', J. Appl. Polym. Sci., 82, 1444 (2001) https://doi.org/10.1002/app.1982
  11. M . Song, D.J. Hourston, K.J. Yao, J. K. H. Tay, and M. A. Ansarifar, 'High Performance Nanocomposites of Polyurethane Elastomer and Organically Modified Layered Silicate', J. Appl. Polym. Sci., 90, 3239 (2003) https://doi.org/10.1002/app.12979
  12. X. Zhang, R. Xu, Z. Wu, and C. Zhou, 'The synthesis and characterization of polyurethane/clay nanocomposites', Polym. Int., 52, 790 (2003) https://doi.org/10.1002/pi.1152
  13. Y. I. Tien and K. H. Wei, 'High-Tensile-Property Layered Silicates/Polyurethane Nanocomposites by Using Reactive Silicates as Pseudo Chain Extenders', Macromolecules, 34, 9045 (2001) https://doi.org/10.1021/ma010551p
  14. Y. I. Tien and K. H. Wei, 'The Effect of Nano-Sized Silicate Layers from Montmorillonite on Glass Transition, Dynamic Mechanical, and Thermal Degradation Properties of Segmented Polyurethane', J. Appl. Polym. Sci., 86, 1741 (2002) https://doi.org/10.1002/app.11086
  15. I. Rhoney, S. Brown, N. E. Hudson, and R. A. Pethrik 'Influence of Processing Method on the Exfoliation Process for Organically Modified Clay Systems. I. Polyurethanes', J. Appl. Polym. Sci., 91, 1335 (2004) https://doi.org/10.1002/app.13302
  16. A. Pattanayak and S. C. Jana, 'Synthesis of thermoplastic polyurethane nanocomposites of reactive nanoclay by bulk polymerization methods', Polymer, 46, 3275 (2005) https://doi.org/10.1016/j.polymer.2005.02.081
  17. Technical document for Cloisite 30B (Product Bulletin), Southern Clay Products, Inc, TX, USA
  18. W. J. Hehre, 'A Guide to Molecular Mechanics and Quantum Chemical Calculations', Wavefunction, Inc, CA, U.S.A., 2003
  19. A. S. Michaels and A. R. Colville Jr., 'The Effect of Surface Active Agents on Crystal Growth Rate and Crystal Habit', J. Phys. Chem., 64, 13 (1960) https://doi.org/10.1021/j100830a005
  20. J. Housty et M. Hospital, 'Localisation des atomes d'hydrogene dans l'acide adipique COOH$[CH_2]_4$COOH', Acta Cryst., 18, 693 (1965) https://doi.org/10.1107/S0365110X65001597
  21. G. Clydesdale, G. B. Thomson, E. M. Walker, K. J. Roberts, P. Meenan, R. Docherty, 'A Molecular Modeling Study of the Crystal Morphology of Adipic Acid and Its Habit Modification by Homologous Impurities', Crystal Growth & Design, 5, 2154 (2005) https://doi.org/10.1021/cg049720y
  22. A. Riga, 'Thermal analysis as an aid to forensics: Alkane melting and oxidative stability of wool', Thermochimica Acta, 324, 151 (1998) https://doi.org/10.1016/S0040-6031(98)00531-0
  23. Y. Fang, S. Kuang, X. Gao, and Z. Zhang, 'Preparation and characterization of novel nanoencapsulated phase change materials', Energy Conversion and Management, 49, 3704 (2008) https://doi.org/10.1016/j.enconman.2008.06.027