용융 폴리우레탄의 비 뉴톤 유동 메카니즘과 유변학적인 성질

The Non Newtonian Flow Mechanism and Rheological Properties of Polyurethane Melts

  • 발행 : 2009.12.31

초록

용융 폴리우레탄의 비 뉴톤 유동곡선을 Physica cone-plate 레오메타를 사용하여 여러 온도에서 구하였다. 이러한 유동 곡선을 이론적인 비 뉴톤 유동식에 적용하여 유동파라메타를 얻었다. 유동곡선에서 전단 속도를 증가시켰다가 감소시킬 때 hysteresis loop가 나타나며, 틱소트로피 유동 현상을 보인다. 용융 폴리우레탄은 전단 흐름에서는 강한 젤 현상을 보이나, 항복응력 이상에서는 비선형 점탄성 성질을 나타낸다. 전단속도를 감소시킬 때 구조변형이 일어나서 전단응력이 전단 속도 증가시보다 작은 값을 보이게 된다.

The non-Newtonian flow curves of polyurethane melts were obtained by using a Physica cone-plate rheometer at various temperatures. The rheological parameters were obtained by applying non-Newtonian flow equation to the flow curves for polyurethane samples. When the polyurethane samples are under increasing-decreasing shear rate modes, the hysteresis loop and thixotropic behavior were shown. Polyurethane melts behave as strong gels when they are subjected to shear flow, but when the applied stress surpasses the yield stress, they exhibit non-linear viscoelasticity. Upon decreasing shear rate, its shear stress remains smaller than the values measured in the increasing shear rate mode, because of broken of its structure.

키워드

참고문헌

  1. X. D. Wang, X. Luo, and X. F. Wang, 'Study on blends of thermoplastic polyurethane and aliphatic polyester: morphology, rheology, and properties as moisture vapor permeable films', Polym. Test., 24, 18 (2005) https://doi.org/10.1016/j.polymertesting.2004.08.003
  2. K. F. Grythe, F. K. Hansen, and H. Walderhaug, 'NMR self-diffusion and viscosity of polyurethane formulation for rocket propellants', J. Phys. Chem. B, 108, 12404 (2004) https://doi.org/10.1021/jp049713k
  3. K. Palanivelu, P. Sivaraman, and M.D. Reddy, 'Studies on thermoplastic polyurethane toughened poly(butylene terephthalate) blends', Polym. Test., 21, 345 (2002) https://doi.org/10.1016/S0142-9418(01)00095-2
  4. Q. W. Lu, M.E. Hernandez-Hernandez, and C.W. Macosko, 'Explaining the abnormally high flow activation energy of thermoplastic polyurethanes', Polymer, 44, 3309 (2003) https://doi.org/10.1016/S0032-3861(03)00223-4
  5. N. J. Kim, 'Determination of Self Diffusion Distributions of Molten Polyurethanes by Relaxation Spectra', Journal of the Korean Chemical Society, 50, 196 (2006) https://doi.org/10.5012/jkcs.2006.50.3.196
  6. J. H. Bang, N. J. Kim S. W. Choi, E. R. Kim, and S. J. Hahn, 'The equilibrium between dilatant and thixotropic flow units', Bull. Korean Chem. Soc., 17, 262 (1996) https://doi.org/10.1007/BF02699037
  7. I. Wagstaff and C.E. Chaffey, 'Shear thinning and thickening rheology : I. Concentrated acrylic dispersions', J. Colloid and Interface Sci., 59, 53 (1977) https://doi.org/10.1016/0021-9797(77)90338-1
  8. C. H. Lee, V. Moturi, and Y. Lee, 'Thixotropic property in pharmaceutical formulations', Journal of Controlled Release, 136, 88 (2009) https://doi.org/10.1016/j.jconrel.2009.02.013
  9. J. Lin, Z. Wen, Y. Liu, X. Xu, S. Song, and N. Li, 'Rheological behavior of aqueous polymer-plasticized $\gamma$-LiAlO_2 pastes for plastic forming', Ceramics International, 35, 2289 (2009) https://doi.org/10.1016/j.ceramint.2009.01.001
  10. R. Durairaj, S. Ramesh, S. Mallik, A. Seman, and N. Ekere, 'Rheological characterisation and printing performance of Sn/Ag/Cu solder pastes', Materials & Design, 30, 3812 (2009) https://doi.org/10.1016/j.matdes.2009.01.028
  11. B. S. Ghotra, T. Vasanthan, and F. Temelli, 'Rheological properties of aqueous blends of high purity barley $\beta$-glucan with high purity commercial food gums', Food Chemistry, 117, 417 (2009) https://doi.org/10.1016/j.foodchem.2009.04.027
  12. N .J. Kim, 'Thixotropic properties of polyacrylamide hydrogels with various synthetic conditions', Journal of the Korean Chemical Society, 50, 447 (2006) https://doi.org/10.5012/jkcs.2006.50.6.447
  13. Q. W. Lu, M.E. Hernandez-Hernandez, and C.W. Macosko, 'Explaining the abnormally high flow activation energy of thermoplastic polyurethanes', Polymer, 44, 3309 (2003) https://doi.org/10.1016/S0032-3861(03)00223-4