References
- C. L. Bajaj, V. Pascucci, and D. R. Schikore. “The contour spectrum”. in IEEE Visualization Conference, pages 167-173, 1997.
- H. Carr, J. Snoeyink, and U. Axen. “Computing contour trees in all dimensions”. Computational Geometry: Theory and Applications, 24(2):75-94, 2003. https://doi.org/10.1016/S0925-7721(02)00093-7
- H. Carr, J. Snoeyink, and M. van de Panne, “Flexible isosurfaces: Simplifying and displaying scalar topology using the contour tree”, Computational Geometry: Theory and Applications, 43(1), pages 42-58, 2010 https://doi.org/10.1016/j.comgeo.2006.05.009
- H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. “Morse complexes for piecewise linear 3-manifolds”. in Proceeding of the 19-th ACM Symposium on Computational Geometry (SoCG). Pages 361-370, 2003
- G. M. Nielson and J. Sung. “Interval volume tetrahedrization”. in IEEE Visualization Conference, pages 221-228, 1997.
- M. J. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and D. Schikore. “Contour trees and small seed sets for isosurface traversal”. in ACM Symposium on Computational Geometry, pages 212-220, 1997.
- H. Carr, T. Moeller, and J. Snoeyink. “Artifacts caused by simplicial subdivision”. IEEE Transactions on Visualization and Computer Graphics, 12(2), pages 231-242, 2006. https://doi.org/10.1109/TVCG.2006.22
- C. A. Dietrich, C.E. Scheidegger, J. Schreiner, J. Comba, L. P. Nedel, and C. T. Silva, “Edge Transformations for Improving Mesh Quality of Marching Cubes”, IEEE Transactions on Visualization and Computer Graphics, 15(1): 150-159, 2009 https://doi.org/10.1109/TVCG.2008.60
- J. Zhang, C. Bajaj, and B.-S. Sohn. “3D finite element meshing from imaging data”. in the special issue of Computer Methods in Applied Mechanics and Engineering (CMAME) on Unstructured Mesh generation, 194(48-49), 2005.
- G. Albertelli and R. A. Crawfis. “Efficient subdivision of finite-element datasets into consistent tetrahedral”. in IEEE Visualizaton Conference, pages 213-219, 1997.
- W. J. Schroeder, B. Geveci, and M.Malaterre. “Compatible triangulations of spatialdecompositions”. in IEEE Visualization Conference, pages 211-218, 2004.
- P. Ning and J. Bloomenthal. “An evaluation of implicit surface tillers”. IEEE Computer Graphics and Applications, pages 33-41, 1993.
- P. Shirley and A. Tuchman. “A polygonal approximation to direct scalar volume rendering”. Computer Graphics, 24(5):63-70, 1990.
- D. N. Kenwright and D. A. Lane. “Interactive timedependent particle tracing using tetrahedral decomposition”. IEEE Ttransactions on Visualization and Computer Graphics, 2(2):120-129, 1996. https://doi.org/10.1109/2945.506224
- G. M. Nielson and B. Hamman. “The asymptotic decider: resolving the ambiguity in marching cubes”. in Proceedings of IEEE Visualization Conference, pages 83-91, 1991.
- B. K. Natarajan. “On generating topologically consistent isosurfaces from uniform samples”. The Visual Computer, 11(1):52-62, 1994. https://doi.org/10.1007/BF01900699
- P. Cignoni, F. Ganovelli, C. Montani, and R. Scopigno. “Reconstruction of topologically correct and adaptive trilinear isosurfaces”. Computers and Graphics, 24(3):399-418, 2000. https://doi.org/10.1016/S0097-8493(00)00036-4
- E. V. Chernyaev. “Marching cubes 33 : Construction of topologically correct isosurfaces”. Technical report, Technical Report CN/95-17, CERN, 1995.
- G. M. Nielson. “On marching cubes”. IEEE Transactions on Visualization and Computer Graphics, 9(3):283-297, 2003. https://doi.org/10.1109/TVCG.2003.1207437
- A. Lopes and K. Brodlie. “Improving the robustness and accuracy of the marching cubes algorithm for isosurfacing”. IEEE Transactions on Visualization and Computer Graphics, pages 19-26, 2003.
- I. Fujishiro, Y. Maeda, H. Sato, and Y. Takeshima. “Volumetric data exploration using interval volume”. IEEE Transactions on Visualization and Computer Graphics, 2(2):144-155, 1996. https://doi.org/10.1109/2945.506226
Cited by
- Volume Haptics with Topology-Consistent Isosurfaces vol.8, pp.4, 2009, https://doi.org/10.1109/toh.2015.2466239