Characteristics Analysis for RUSLE Factors based on Measured Data of Gangwon Experimental Watershed(II)

강원지역 시험유역에 대한 RUSLE 인자특성 분석 (II) - RUSLE 모형의 시험유역 적용을 중심으로 -

  • 이종설 (국립방재교육연구원 방재연구소) ;
  • 정재학 (국립방재교육연구원 방재연구소)
  • Published : 2009.12.31

Abstract

In this study, the characteristics of estimating methodology for RUSLE factors such as soil erodibility factor, slope length-steepness factor, and cover management factor were reviewed and then the relative error according to each methodology was analyzed. RUSLE was applied to experimental watershed for 42 storm events and their results were compared with measured sediment yield to examine the applicability of RUSLE. As a result, this paper found that it should be necessary to consider vegetation effect for forest application of RUSLE as cover management was the most sensitive factor. Also, soil erodbility factor was calculated from data of soil series by National Academy of Agricultural Science caused sediment yield to be overestimated because there were big differences between the soil series and on-site soil texture. The 22.7% of maximum relative error was shown according to selecting the rain energy equation. In addition, it will be necessary to verify the RUSLE factors with more data in order to improve their accuracy.

본 연구에서는 토양침식성 인자, 사면경사길이 인자, 피복관리 인자 등 RUSLE 모형의 각종 인자들의 산정방법의 특성을 검토하고 산정방법간의 오차를 분석하고자 하였다. 또한, 42개의 강우사상에 대해 RUSLE모형을 강원 토사유출 시험유역에 적용하여 토사유출량을 산정하고 그 결과를 관측 토사유출량과 비교함으로써 모형의 적용성을 검토하였다. RUSLE모형의 각종 인자들에 대한 분석결과 피복관리 인자가 가장 민감한 것으로 나타났으며, 산지유역에 RUSLE를 적용하는 경우 식생의 영향을 반드시 고려할 필요가 있다. 또한 국립농업과학원 토양정보시스템의 토양통 자료를 이용하는 경우 현장토양 특성을 반영하지 못해 큰 오차가 발생하는 것으로 나타났다. 강우에너지 산정방법에 따라서는 최대 22.7%의 오차가 발생하는 것으로 나타났으며, 향후 보다 많은 자료를 이용하여 각 인자들을 검증할 필요가 있다.

Keywords

References

  1. 김민석, 김진관, 양동윤, 정관수 (2007) Process Based Erosion Model을 이용한 자연사면에서의 토사유출 산정 : 편마암 지역사례연구, 한국지형학회지, 제14권 제4호, pp. 107-116
  2. 노재경, 권순국 (1984) 강우특성을 이용한 강우에너지 산정에 관한 연구, 서울대 농학연구, 제9권, 제2호, pp. 23-31
  3. 이근상, 박진혁, 채효석, 고덕구 (2005) 강우가중치를 이용한 GIS 기반 월별 토사유실량 평가, 한국지리정보학회지, 제8권, 제3호, pp. 65-73
  4. Hann, C.T., B.J. Barfield, and Hayes, J.C. (1994) Design Hydrology and Sedimentology for Small Catchments. Academic Press, New York, 1994
  5. Liu B.Y. Nearing, M.A., Shi, P.J. and Jia, Z.W. (2000) Slope length effects on soil loss for steep slopes, Soil Science Society of America Journal 64, pp. 1759-1763 https://doi.org/10.2136/sssaj2000.6451759x
  6. Lu, H., Gallant, J., Prosser, P., Moran, C., ad Proestley, G. (2001) Prediction of sheet and rill erosion over the Australian Continent, Incorporating monthly soil loss distribution, Technical Report 13/01, SCIRO Land and Water Canberra, Australia
  7. McCool D.K., Feorge, G.E., Freckleton, C.K., Douglas, C.L., and Papendick, R.I. (1993) Topographic effect of erosion from ecopland in the Northwestern Wheat Region, Transaction of ASCE 36, pp. 771-775
  8. Orr, B.J., Bautista, S., Alloza, J.A., van Leeuwen, W.J.D., Casady, G.M., Davison, J.E., Wittenberg, L., Malkinson, D., Carmel, Y., and Neary, D.G. (2007) Satellite-derived Vegetation Dynamics Applied to Post-fire Vulnerability Assessment in Eastern Spain, International Arid Lands Consortium
  9. van der Knijff J.M, Jones R.J.A., and Montanarella, L. (2000) Soil erosion risk assessment in Europe. EUR 19044 EN. Luxembourg: Office for Official Publications of the European Communities; p. 34
  10. van Dijk, A.I.J.M, Bruijnzeel, L.A. and Rosewell, CJ. (2002) Rainfall intensity-kinetic energy relationships : a critical literature review, Journal of Hydrology 261, pp. 1-23 https://doi.org/10.1016/S0022-1694(02)00020-3
  11. van Leeuwen W.J.D. and Sammons, G. (2005) Vegetation dynamics and erosion modeling using remotely sensed data(MODIS) and GIS. Tenth Biennial USDA Forest Service Remote Sensing Applications Conference 2004, Salt Lake City, UT, U.S. Department of Agriculture Forest Service Remote Sensing Applications Center