The Recovery of Carbon Fiber from Carbon Fiber Reinforced Epoxy Composites Applied to Railway Vehicles

철도차량용 폐 복합소재로부터 탄소섬유 회수

  • 이석호 (부경대학교, 화학공학과) ;
  • 김정석 (한국철도기술연구원, 신소재틸팅열차시스템연구단) ;
  • 이철규 (한국철도기술연구원, 궤도토목연구본부) ;
  • 김용기 (한국철도기술연구원, 궤도토목연구본부) ;
  • 주창식 (부경대학교, 화학공학과)
  • Published : 2009.12.30

Abstract

Recently, the amount of thermosetting plastic wastes has increased with the production of reinforced plastic composites and causes serious environmental problems. The epoxy resins, one of the versatile thermosetting plastics with excellent properties, cannot be melted down and remolded as what is done in the thermoplastic industry. In this research, a series of experiments that decompose epoxy resin and recover carbon fibers from carbon fiber reinforced epoxy composites applied to railway vehicles was performed. We experimentally examined various decomposition processes and compared their decomposition efficiencies and mechanical property of recovered carbon fibers. For the prevention of tangle of recovered carbon fibers, each composites specimen was fixed with a Teflon supporter and no mechanical mixing was applied. Decomposition products were analyzed by scanning electron microscope (SEM), gas chromatography mass spectrometer (GC-MS), and universal testing machine (UTM). Carbon fibers could be completely recovered from decomposition process using nitric acid aqueous solution, liquid-phase thermal cracking and pyrolysis. The tensile strength losses of the recovered carbon fibers were less than 4%.

근래에 와서 강화 플라스틱 복합재료의 생산과 함께 열경화성 수지 폐기물들의 양이 급격하게 증가하여 심각한 환경문제를 야기하고 있다. 우수한 기계적 물성을 지닌 유용한 열경화성 수지의 하나인 에폭시 수지는 열가소성 수지처럼 용융되거나 재 성형되지 않는다. 본 연구에서는 철도 차량용 탄소섬유 강화 에폭시 수지 복합재로부터 에폭시 수지를 분해하여 탄소섬유를 회수하는 일련의 실험을 수행하였다. 여러 분해공정들을 실험적으로 조사하여, 분해 효율과 회수되는 탄소섬유의 기계적 물성을 비교 검토하였다. 회수되는 탄소섬유가 서로 엉키는 것을 방지하기 위해서 각 복합재료 시편은 테플론 지지대로 고정시키고, 기계적인 교반을 가하지 않았다. 분해 생성물은 전자현미경(SEM), 기체 크로마토그라피 질량분석기(GC-MS) 및 만능재료시험기를 사용하여 분석하였다. 질산 수용액을 사용하는 분해 공정과 액상 및 기상 열분해 공정에서는 탄소섬유가 완전하게 회수되었다. 회수된 탄소섬유의 인장강도 감소율은 4% 미만으로 미미하였다.

Keywords

References

  1. W. Dang, M. Kubouchi, S. Yamamoto, H. Sembokuya, and K.Tsuda(2002), “An approach to chemical recycling of epoxy resin cured with amine using nitric acid,” Polymer, Vol. 43, pp.2953-2958 https://doi.org/10.1016/S0032-3861(02)00100-3
  2. W. Dang, M. Kubouchi, H. Sembokuya, and K. Tsuda(2005), “Chemical recycling of glass fiber reinforced epoxy resin cured with amine using nitric acid,” Polymer, Vol. 46, pp. 1905-1912 https://doi.org/10.1016/j.polymer.2004.12.035
  3. Y. Liu, L. Meng, Y. Huang, and J. Du(2004), “Recycling of carbon/epoxy composite,” J. App. Polym. Sci., Vol. 95, pp. 1912-1916
  4. Y. Sato, Y. Kondo, K. Tsujita, and N. Kawai(2005), “Degradation behavior and recovery of bisphenol-A from epoxy resin and polycarbonate resin by liquid-phase chemical recycling,” Polym. Degrad. & Stability, Vol. 89, pp.317-326 https://doi.org/10.1016/j.polymdegradstab.2005.01.015
  5. D. Braun, W. von Gentzkow, and A. P. Tuidolf(2001), 'Hydrogenolytic degradation of thermosets,' Polym. Degrad. & Stability, Vol. 74, pp.25-32 https://doi.org/10.1016/S0141-3910(01)00035-0
  6. K. S. Chen and R. Z. Yeh(1996), “Pyrolysis kinetics of epoxy resin in a nitrogen atmosphere,” J. Hazadous Mater., Vol. 49, pp.105-113 https://doi.org/10.1016/0304-3894(96)01779-7
  7. A. Torres, I. de Marco, B. M. Caballerro, M. F. Laresgoiti, J.A. Legarreta, M. A. Cabrero, A. Gonzalez, M. J. CHomon, and K. Gondra(2000), “Recycling by pyrolysis of thermoset composites : characteristics of the liquid and gaseous fuels obtained,” Fuel. Vol. 79, pp.897-902 https://doi.org/10.1016/S0016-2361(99)00220-3
  8. A. Torres, I. de Marco, B. M. Caballero, M. F. Laresgoiti, M. A. Cabrero, and M. J. Chomon(2000), 'GC-MS analysis of the liquid products obtained in the pyrolysis of fiber-glass polyester sheet moulding compound,' J. Anal. & Appl. Pyrolysis, Vol. 58-59, pp.189-203 https://doi.org/10.1016/S0165-2370(00)00122-4
  9. Y. Liu, J. S. Xue, T. Zheng, and J. R. Dahn(1996), “Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins,” Carbon, Vol. 34, No. 2, pp.193-200 https://doi.org/10.1016/0008-6223(96)00177-7
  10. R. P. Hernanz, J. G. Serna, C. Dodds, J. Hyde, M. Poliakoff, N. J. Cocero, S. Kingman, S. Pickering, and E. Lester(2008), “Chemical recycling of carbon fiber composites using alcohols under subcritical and supercritical conditions,” J. Supercri. Fluids, Vol. 46, pp.83-92 https://doi.org/10.1016/j.supflu.2008.02.008
  11. C. Fromonteil, P. H. Bardelle, and F. Cansell(2000), “Hydrolysis and oxidation of an epoxy resin in sub- and supercritical water,” Ind. Eng. Chem. Res., Vol. 39. pp.922-925 https://doi.org/10.1021/ie990093x
  12. Y. M. Gonzalez, S. T. Roux, P. De-Caro, L. H. Ochoa, and Z. Mouloungui(2006), “The role of co-additive on epoxy resin pre-polymers solubilization in supercritial CO2,” J. Supercri. Fluids, Vol. 38, pp.13-17 https://doi.org/10.1016/j.supflu.2005.11.002