DOI QR코드

DOI QR Code

Grape skin improves antioxidant capacity in rats fed a high fat diet

  • Lee, Su-Jin (Department of Food and Nutrition, Yeungnam University) ;
  • Choi, Soo-Kyong (Department of Food and Nutrition, Yeungnam University) ;
  • Seo, Jung-Sook (Department of Food and Nutrition, Yeungnam University)
  • Published : 2009.12.31

Abstract

This study was conducted to investigate the effect of dietary grape skin on lipid peroxidation and antioxidant defense system in rats fed high fat diet. The Sprague-Dawley rats were fed either control (5% fat) diet or high fat (25% fat) diet which was based on AIN-93 diet for 2 weeks, and then they were grouped as control group (C), control + 5% grape skin group (CS), high-fat group (HF), high fat + 5% grape skin group (HFS) with 10 rats each and fed corresponding diets for 4 weeks. The hepatic thiobarbituric acid reacting substances (TBARS) were increased in high fat group as compared with control group, but reduced by grape skin. The serum total antioxidant status, and activities of hepatic catalase and superoxide dismutase, xanthine oxidase and glucose-6-phosphatase were increased by supplementation of grape skin. Glutathione peroxidase activity was significantly higher in CS group than in C group. Grape skin feeding tended to increase the concentration of total glutathione, especially in control group. The ratio of reduced glutathione to oxidized glutathione was lower in high fat groups than in control groups. The ratio was increased by dietary supplementation of grape skin in control group. These results suggest that dietary supplementation of grape skin would be effective on protection of oxidative damage by lipid peroxidation through improvement of antioxidant defense system in rats fed high fat diet as well as rats with low fat diet.

Keywords

References

  1. Acquaviva R, Russo A, Galvano F, Galvano G, Barcellona ML, Bolti GL & Vanella A (2003). Cyanidin and cyanidin 3-O-$\beta$-D-g lucoside as DNA cleavage protectors and antioxidants. Cell Biol Toxicol 19:243-252 https://doi.org/10.1023/B:CBTO.0000003974.27349.4e
  2. Aebi H (1974). Catalase. In: Bergmeyer HU (Eds.), Methods of Enzymatic Analysis, 11:673-684. Academic Press, New York. USA
  3. Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S & Takada Y (2004). Role of resveratrol in prevention and therapy of cancer: Preclinical and clinical studies. Anticancer Res 24:3-11
  4. Akhileshwar V, Patel SP & Katyare SS (2007). Diabetic cardiomyopathy and reactive oxygen species related parameters in male and female rats: A comparative study. Indian J Clin Biochem 22:84-90 https://doi.org/10.1007/BF02912887
  5. Amirkhizi F, Siassi F, Minaie S, Djalali M, Rahimi A & Chamari M (2007). Is obesity associated with increased plasma lipid peroxidation and oxidative stress in women? ARYA Atherosclerosis Journal 2:189-192
  6. Anderson ME (1985). Determination of glutathione and glutathione disulfide in biological samples. Meth Enzymol 113:548-555 https://doi.org/10.1016/S0076-6879(85)13073-9
  7. Bae HS (2008). Effect of grape skin with resveratrol emplification on lipid metabolism and antioxidative system in rats fed high cholesterol diet. MS thesis, Yeungnam University, Gyeongbuk. Republic of Korea
  8. Baginski ES, Foa PP & Zak B (1983). Glucose-6-phosphatase. In: Bergmeyer HU (Eds.), Methods of Enzymatic Analysis, 2:876-880. Academic Press, New York. USA
  9. Belleville J (2002). The Franch paradox: Possible involvemenet of ethanol in the protective effect against cardiovascular disease. Nutrition 18:173-177 https://doi.org/10.1016/S0899-9007(01)00721-3
  10. Beltowski J, Wojcicka G, Gorny D & Marciniak A (2000). The effect of dietary-induced obesity on lipid peroxidation, antioxidant enzymes and total plasma antioxidant capacity. J Physiol Pharmacol 51:883-896
  11. Bralley EE, Hargrove JL, Greenspan P & Hartle DK (2007). Topical anti-inflammatory activities of Vitis rotundifolia(Muscadine grape) extracts in the tetradecanoylphorbol acetate model of ear inflammation. J Med Food 10:636-642 https://doi.org/10.1089/jmf.2006.244
  12. Bray GA, Paeratakul S & Popkin BM (2004). Dietary fat and obetisy: a review of animal, clinical and epidemiological studies. Physiology & Behavior 83:549-555 https://doi.org/10.1016/j.physbeh.2004.08.039
  13. Caballero B (2007). The global epidemic of obesity: An overview. Epidemiol Rev 29:1-5 https://doi.org/10.1093/epirev/mxm012
  14. Campolo J, Maria RD, Caruso R, Accinni R, Turazza F, Parolini M, Roubina E, Chiara BD, Cighetti G, Frigerio M, Vitali E & Parodi O (2006). Blood glutathone as independent marker of lipid peroxidation in heart failure. Int J Cardiol 117:45-50 https://doi.org/10.1016/j.ijcard.2006.04.065
  15. Cho YJ, Kim JE, Chun HS, Kim CT, Kim SS & Kim CJ (2003). Contents of resveratrol in different parts of grapes. Korean Journal of Food Science and Technoloy 35:306-308
  16. Cui J, Juhasz B, Tosaki A, Maulik N & Das DK (2002). Cardioprotection with grape. J Cardiovasc Pharmacol 40:762-769 https://doi.org/10.1097/00005344-200211000-00014
  17. Decorde K, Teissedre PL, Sutra T, Ventura E, Cristol JP & Rouanet JM (2009). Chardonnay grape seed procyanidin extract supplementation prevents high-fat diet-induced obesity in hamsters by improving adipokine imbalance and oxidative stress markers. Mol Nutr Food Res 53:659-666 https://doi.org/10.1002/mnfr.200800165
  18. Delmas D, Jannin B & Latruffe N (2005). Resveratrol: Preventing properties against vascular alterations and ageing. Mol Nutr Food Res 49:377-395 https://doi.org/10.1002/mnfr.200400098
  19. Evans P & Halliwell B (2001). Micronutrients: Oxidabt/antioxidant status. Br J Nutr 85:S67-S74 https://doi.org/10.1049/BJN2000296
  20. Falchi M, Bertelli A, Scalzo R, Morassut M, Morelli R, Das S, Cui J & Das DK (2006). Comparison of cardioprotective abilities between the flesh and skin of grapes. J Agric Food Chem 54:6613-6622 https://doi.org/10.1021/jf061048k
  21. Fang YZ, Yang S & Wu G (2002). Free radicals, antioxidants and nutrition. Nutrition 18:872-879 https://doi.org/10.1016/S0899-9007(02)00916-4
  22. FAO (2005). STAT database. www.Fao.org. Accessed on 7/20/2007
  23. Feillet-Coudray C, Sutra T, Fouret G, Ramos J, Wrutniak-Cabello C, Cabello G, Cristol JP & Coudray C (2009). Oxidative stress in rats fed a high-fat high-sucrose diet and preventive effect of polyphenols: Involvement of mitochondrial and NAD(P)H oxidase systems. Free Radic Biol Med 46:624-232 https://doi.org/10.1016/j.freeradbiomed.2008.11.020
  24. Frederiksen H, Mortensen A, Schroder M, Frandsen H, Bysted A, Kunthsen P & Rasmussen SE (2007). Effects of red grape skin and seed extract supplementation on atherosclerosis in watanabe heritable hyperlipidemic rabbits. Mol Nutr Food Res 51:564-571 https://doi.org/10.1002/mnfr.200700009
  25. Fukao H, Ijiri Y, Miura M, Hashimoto M, Yamashita T, Fukunaga C, Oiwa K, Kawai Y, Suwa M & Yamamoto J (2004). Effect of trans-resveratrol on the thrombogenicity and atherogenicity in apolipoprotein E-deficient and low-density lipoprotein receptordeficient mice. Blood Coagul Fibrinolysis 15:441-446 https://doi.org/10.1097/00001721-200408000-00001
  26. Furukawa S, Fujita T, Shimabukuro M, Lwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M & Shimomura I (2004). Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752-1761 https://doi.org/10.1172/JCI21625
  27. Habig WH, Pabst MJ & Jakoby WB (1974). Glutathione-Stransferase. The first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130-7139
  28. Hogeboom GH (1955). Fractionation of cell components of animal tissues. Meth Enzymol 1:16-19 https://doi.org/10.1016/0076-6879(55)01007-0
  29. Hsu CL & Yen GC (2007). Effect of gallic acid on high fat diet-induced dyslipidaemia, hepatosteatosis and oxidative stress in rats. Br J Nutr 98:727-735 https://doi.org/10.1017/S000711450774686X
  30. Kasdallah-Grissa A, Mornagui B, Aouani E, Hammami M, Gharbi N, Kamoun A & El-Fazaa S (2006). Protective effect of resveratrol on ethanol-induced lipid peroxidation in rats. Alcohol Alcohol 41:236-239 https://doi.org/10.1093/alcalc/agh256
  31. Lowry OH, Rosebrough NJ, Farr AL & Randall RJ (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193:265-275
  32. Madeira SV, Auger C, Anselm E, Chataigneau M, Chataigneau T, Moura RS & Schini-Kerth VB (2009). eNOS activation induced by a polyphenol-rich grape skin extract in porcine coronary arteries. J Vasc Res 46:406-416 https://doi.org/10.1159/000194271
  33. Makris DP, Boskou G & Andrikopoulos NK (2007). Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J Food Compost Anal 20:125-132 https://doi.org/10.1016/j.jfca.2006.04.010
  34. Marklund S & Marklund G (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  35. Miller NJ, Rice0Ebans C, Davies MJ, Gopinathan V & Milner A (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 84:407-412 https://doi.org/10.1042/cs0840407
  36. Miura D, Miura Y & Yagasaki K (2003). Hypolipidemic action of dietary resveratrol, a phytoalexin in grapes and red wine, in hepatoma-bearing rats. Life Sci 73:1393-1400 https://doi.org/10.1016/S0024-3205(03)00469-7
  37. Negro C, Tommasi L & Miceli A (2003). Phenolic compounds and antioxidant activity from red grape marc extracts. Bioresour Technol 87:41-44 https://doi.org/10.1016/S0960-8524(02)00202-X
  38. Oben JE, Enyegue DM, Fomekong GI, Soukontoua YB & Agbor GA (2007). The effect of Cissus quadrangularis (GQR-300) and a Cissus formulation (CORE) on obesity and obesity-induced oxidative stress. Lipids Health Dis 6:4-12 https://doi.org/10.1186/1476-511X-6-4
  39. Ohkawa H, Ohishi N & Yagi K (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351-358 https://doi.org/10.1016/0003-2697(79)90738-3
  40. Olusi SO (2002). Obesity is an independent risk factor for plasma lipid peroxidation and depletion of erythrocyte cytoprotectic enzymes in humans. Int J Obes 26:1159-1164 https://doi.org/10.1038/sj.ijo.0802066
  41. Paglia DE & Valentine WN (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158-169
  42. Pelicano H, Carney D & Huang P (2004). ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7:97-110 https://doi.org/10.1016/j.drup.2004.01.004
  43. Ramirez-Tortosa C, Andersen OM, Gardner PT, Morrice PC, Wood SG, Duthie SJ, Collins AR & Duthie GG (2001). Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin E-depleted rats. Free Radic Biol Med 31:1033-1037 https://doi.org/10.1016/S0891-5849(01)00618-9
  44. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M & Rice-Evans C (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  45. Rocha KK, Souza GA, Ebaid GX, Seiva FRF, Cataneo AC & Novelli ELB (2009). Resveratrol toxicity: Effects on risk factors for atherosclerosis and hepatic oxidatice stress in standard an high-fat diets. Food Chem Toxicol 47:1362-1367 https://doi.org/10.1016/j.fct.2009.03.010
  46. Scarlatti F, Sala G, Somenzi G, Signorelli P, Sacchi N & Ghidoni R (2003). Resveratrol induces growth inhibition and apoptosis in metastatic breast cancer cells via de novo ceramide signaling. FASEB J 17:2339-2341 https://doi.org/10.1096/fj.03-0292fje
  47. Schneider Y, Vincent F, Duranton B, Badolo L, Gosse F, Bergmann C, Seiler N & Raul F (2000). Anti-proliferative effect of resveratrol, a natural component of grapes and wine, on human colonic cancer cells. Cancer Lett 158:85-91 https://doi.org/10.1016/S0304-3835(00)00511-5
  48. Sener G, Topaloglu N, Sehirli O, Ercan F & Gedik N (2007). Resveratrol alleviates bleomycin-induced lung injury in rats. Pulm Pharmacol Ther 20:642-649 https://doi.org/10.1016/j.pupt.2006.07.003
  49. Sies H (1999). Glutathione and its role in cellular functions. Free Radic Biol Med 27:916-921 https://doi.org/10.1016/S0891-5849(99)00177-X
  50. Singleton VL, Joseph A & Possi JR (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144-158
  51. Strip F & della Corte E (1969). The regulation of rat liver xanthine oxidase; Conversion in vitro of the enzyme activity from dehydrogenase (Type D) to oxidase (Type O). J Biol Chem 244:3855-3863
  52. Su H, Hung L & Chen J (2006). Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab 290:E1339-E1346 https://doi.org/10.1152/ajpendo.00487.2005
  53. Tsuda T, Horio F, Uchida K, Aoki H & Osawa T (2003). Dietary cyanidin 3-O-$\beta$-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J Nutr 133:2125-2130 https://doi.org/10.1093/jn/133.7.2125
  54. Vasdev S & Gill V (2005). Antioxidants in the treatment of hypertension. Int J Angiol 14:60-73 https://doi.org/10.1007/s00547-005-2033-y
  55. West DB & York B (1998). Dietary fat, genetic predisposition, and obesity: lessons from animal models. Am J Clin Nutr 67:505s-5012s https://doi.org/10.1093/ajcn/67.3.505S
  56. Yagi K (1976). A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med 15:212-216 https://doi.org/10.1016/0006-2944(76)90049-1
  57. Yassa N, Razavi BH & Hadjiakhoondi A (2008). Free radical scavenging and lipid peroxidation activity of the shahani black grape. Pak J Biol Sci 11:2513-2516 https://doi.org/10.3923/pjbs.2008.2513.2516
  58. Young JF, Dragsted LO, Daneshvar B, Lauridsen ST, Hansen M & Sandstrom B (2000). The effect of grape skin extract on oxidative status. Br J Nutr 84:505-513 https://doi.org/10.1017/S0007114500001811
  59. Yunoki K, Sasaki G, Tokuji Y, Kinoshita M, Naito A, Aida K & Ohnishi M (2008). Effect of dietary wine pomace eztract and oleanolic acid on plasma lipids in rats fed high-fat diet and its DNA microarray analysis. J Agric Food Chem 56:12052-12058 https://doi.org/10.1021/jf8026217
  60. Zhang X, Dong F, Ren J, Driscoll MJ & Culver B (2005). High dietary fat induces NADPH oxidase-associated oxidative stress and inflammation in rat cerebral cortex. Exp Neurol 191:318-325 https://doi.org/10.1016/j.expneurol.2004.10.011
  61. Zhang Y, Liu Y, Wang T, Li B, Li H, Wang Z & Yang B (2006). Resveratrol, a natural ingredient of grape skin: Antiarrhythmic efficacy and ionic mechanisms. Biochem Biophys Res Commun 340:1192-1199 https://doi.org/10.1016/j.bbrc.2005.12.124

Cited by

  1. Anti-obesity effect of grape skin extract in 3T3-L1 adipocytes vol.20, pp.3, 2011, https://doi.org/10.1007/s10068-011-0090-x
  2. Miquel supplement on plasma antioxidant capacity in healthy Korean men vol.5, pp.5, 2011, https://doi.org/10.4162/nrp.2011.5.5.429
  3. Suppression of oxidative stress by grape seed supplementation in rats vol.6, pp.1, 2012, https://doi.org/10.4162/nrp.2012.6.1.3
  4. Jaboticaba (Myrciaria jaboticaba (Vell.) Berg.) peel improved triglycerides excretion and hepatic lipid peroxidation in high-fat-fed rats vol.26, pp.5, 2013, https://doi.org/10.1590/S1415-52732013000500008
  5. The Effects of Extraction Conditions on the Antioxidative Effects of Extracts from Campbell Early and Muscat Bailey A Grapevine Leaves vol.42, pp.2, 2013, https://doi.org/10.3746/jkfn.2013.42.2.168
  6. Lycopene supplementation suppresses oxidative stress induced by a high fat diet in gerbils vol.7, pp.1, 2013, https://doi.org/10.4162/nrp.2013.7.1.26
  7. Antioxidant effect of grapevine leaf extract on the oxidative stress induced by a high-fat diet in rats vol.23, pp.3, 2014, https://doi.org/10.1007/s10068-014-0114-4
  8. The mitochondrial-targeted antioxidant MitoQ ameliorates metabolic syndrome features in obesogenic diet-fed rats better than Apocynin or Allopurinol vol.48, pp.10, 2014, https://doi.org/10.3109/10715762.2014.945079
  9. Beneficial effects of hydro-alcoholic extract of Caralluma fimbriata against high-fat diet-induced insulin resistance and oxidative stress in Wistar male rats vol.70, pp.2, 2014, https://doi.org/10.1007/s13105-013-0304-1
  10. Efficacy of Procyanidins against In Vivo Cellular Oxidative Damage: A Systematic Review and Meta-Analysis vol.10, pp.10, 2015, https://doi.org/10.1371/journal.pone.0139455
  11. Blueberry (Vaccinium virgatum Aiton) Leaf Infusion Ameliorates Insulin Resistance in Mice Fed a High-fat, High-sucrose Diet vol.21, pp.6, 2015, https://doi.org/10.3136/fstr.21.827
  12. Dual effects of a mixture of grape pomace (Campbell Early) and Omija fruit ethanol extracts on lipid metabolism and the antioxidant defense system in diet-induced obese mice vol.9, pp.3, 2015, https://doi.org/10.4162/nrp.2015.9.3.227
  13. Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart vol.2016, pp.1942-0994, 2016, https://doi.org/10.1155/2016/3863726
  14. Antioxidative effect of CLA diet and endurance training in liver and skeletal muscles of rat vol.22, pp.5, 2017, https://doi.org/10.1007/s12257-017-0119-y
  15. Beneficial effects of a red wine polyphenol extract on high-fat diet-induced metabolic syndrome in rats vol.56, pp.4, 2017, https://doi.org/10.1007/s00394-016-1192-2
  16. Apple Cider Vinegar Attenuates Oxidative Stress and Reduces the Risk of Obesity in High-Fat-Fed Male Wistar Rats pp.1557-7600, 2018, https://doi.org/10.1089/jmf.2017.0039
  17. and metformin protection of rat pancreas from high fat diet induced oxidative stress vol.93, pp.3, 2018, https://doi.org/10.1080/10520295.2017.1406615
  18. L.) Seed Meal and Its Phenolic-Saponin-Rich Extract Protect Hypercholesterolemic Rats against Oxidative Stress and Systemic Inflammation via Transcriptional Modulation of Hepatic Antioxidant Genes vol.2018, pp.1942-0994, 2018, https://doi.org/10.1155/2018/6742571
  19. Effect of ethanol extracts from red pepper seeds on antioxidative defense system and oxidative stress in rats fed high-fat · high-cholesterol diet vol.4, pp.1, 2010, https://doi.org/10.4162/nrp.2010.4.1.11
  20. 탈진적 운동과 마늘진액 섭취가 고지방식이로 비만이 유도된 흰쥐에 체중, 지방량, 혈중지질 및 산화적 스트레스에 미치는 영향 vol.20, pp.12, 2009, https://doi.org/10.5352/jls.2010.20.12.1889
  21. White grape pomace as a source of dietary fibre and polyphenols and its effect on physical and nutraceutical characteristics of wheat biscuits vol.93, pp.2, 2009, https://doi.org/10.1002/jsfa.5774
  22. Protective effect of grape by‐product‐fortified breads against cholesterol/cholic acid diet‐induced hypercholesterolaemia in rats vol.93, pp.13, 2009, https://doi.org/10.1002/jsfa.6171
  23. An Experimental Approach for Selecting Appropriate Rodent Diets for Research Studies on Metabolic Disorders vol.2013, pp.None, 2009, https://doi.org/10.1155/2013/752870
  24. Impact of eight weeks endurance training on biochemical parameters and obesity-induced oxidative stress in high fat diet-fed rats vol.20, pp.1, 2009, https://doi.org/10.20463/jenb.2016.03.20.1.5
  25. Renoprotective effect of Caralluma fimbriata against high-fat diet-induced oxidative stress in Wistar rats vol.24, pp.3, 2016, https://doi.org/10.1016/j.jfda.2016.01.013
  26. Effect of Adding Walnut Powder on Physical and Chemical Properties of Wheat Flour and Preventing Hyperlipidemia in Mice vol.10, pp.7, 2019, https://doi.org/10.4236/fns.2019.107057
  27. Sea Buckthorn and Grape Antioxidant Effects in Hyperlipidemic Rats: Relationship with the Atorvastatin Therapy vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/1736803
  28. A comparison of the effects of Stevia extract and metformin on metabolic syndrome indices in rats fed with a high‐fat, high‐sucrose diet vol.44, pp.8, 2009, https://doi.org/10.1111/jfbc.13242