초록
문서군집은 정보검색의 많은 응용분야에 사용되는 중요한 문서 분석 방법이다. 본 논문은 비음수 행렬 분해 (NMF, non-negative matrix factorization)를 군집방법과 군집의 응집도(coherence of cluster)를 이용한 군집 내 문서들의 정제를 이용한 새로운 문서군집방법을 제안한다. 제안된 방법은 문서집합의 내부구조를 나타내는 의미특징행렬과 의미변수행렬 이용하여 문서군집의 성능을 높일 수 있고, 문장들 간의 유사도에 기반 한 군집의 응집도를 이용하여 군집내의 문서들을 정제하여서 재 할당함으로써 군집의 효율을 향상시킬 수 있다. 실험결과 제안방법을 적용한 문서군집방법이 다른 문서군집 방법에 비하여 좋은 성능을 보인다.
Document clustering is an important method for document analysis and is used in many different information retrieval applications. This paper proposes a new document clustering model using the clustering method based NMF(non-negative matrix factorization) and refinement of documents in cluster by using coherence of cluster. The proposed method can improve the quality of document clustering because the re-assigned documents in cluster by using coherence of cluster based similarity between documents, the semantic feature matrix and the semantic variable matrix, which is used in document clustering, can represent an inherent structure of document set more well. The experimental results demonstrate appling the proposed method to document clustering methods achieves better performance than documents clustering methods.