Abstract
Various types of vibration are transmitted to operators of agricultural tractors while working in the field. Most harmful vibration to human body is ride vibrations with low frequency ranging from 1 to 10 Hz, caused by rough terrain. These ride vibration has vertical and rotational components. This study was conducted to develop an active seat suspension system with two degrees of freedoms, enabling effectively reduce vibrations in vertical and pitch motions. Therefore, a mechanism for the active seat suspension was developed, and an electro-hydraulic servo system and a controller to drive the active seat suspension system were also developed in this study. A simulation model was developed to evaluate how the active seat suspension system effectively reduce the vibrations transmitted to the base of seat. Active seat suspension was optimized to enhance the performance using the developed simulation model. The performance of the seat suspension system was evaluated according to the test codes described in EEC78/764 in order to investigate the feasibility of application to agricultural tractors. The result showed that the developed active seat suspension system could reduce the magnitude of vertical vibration up to 80% for the input vibrations according to the test codes described in EEC78/764. The system could reduce the rotational displacement of ${\pm}\;2.5$ degrees up to 50% for the pitch vibration on the average in the frequency range of 1 to 2 Hz.