DOI QR코드

DOI QR Code

Stability of Partial Nitrification and Microbial Population Dynamics in a Bioaugmented Membrane Bioreactor

  • Zhang, Yunxia (School of Environmental and Biological Science and Technology, Dalian University of Technology) ;
  • Xu, Yanli (School of Environmental and Biological Science and Technology, Dalian University of Technology) ;
  • Jia, Ming (School of Energy and Power Engineering, Dalian University of Technology) ;
  • Zhou, Jiti (School of Environmental and Biological Science and Technology, Dalian University of Technology) ;
  • Yuan, Shouzhi (School of Environmental and Biological Science and Technology, Dalian University of Technology) ;
  • Zhang, Jinsong (School of Environmental and Biological Science and Technology, Dalian University of Technology) ;
  • Zhang, Zhen-Peng (Institute of Environmental Science and Engineering, Nanyang Technological University)
  • Published : 2009.12.31

Abstract

Bioaugmentation of bioreactors focuses on the removal of numerous organics, with little attention typically paid to the maintenance of high and stable nitrite accumulation in partial nitrification. In this study, a bioaugmented membrane bioreactor (MBR) inoculated with enriched ammonia-oxidizing bacteria (AOB) was developed, and the effects of dissolved oxygen (DO) and temperature on the stability of partial nitrification and microbial community structure, in particular on the nitrifying community, were evaluated. The results showed that DO and temperature played the most important roles in the stability of partial nitrification in the bioaugmented MBR. The optimal operation conditions were found at 2-3 mgDO/l and $30^{\circ}C$, achieving 95% ammonia oxidization efficiency and nitrite ratio ($NO_2^-/{NO_x}^-$) of 0.95. High DO (5-6 mg/l) and low temperature ($20^{\circ}C$) had negative impacts on nitrite accumulation, leading to nitrite ratio drop to 0.6. However, the nitrite ratio achieved in the bioaugmented MBR was higher than that in most previous literatures. Denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH) were used to provide an insight into the microbial community. It showed that Nitrosomonas-like species as the only detected AOB remained predominant in the bioaugmented MBR all the time, and coexisted with numerous heterotrophic bacteria. The heterotrophic bacteria responsible for mineralizing soluble microbial products (SMP) produced by nitrifiers belonged to the Cytophaga-Flavobacterium-Bacteroides (CFB) group, and $\alpha$-, $\beta$-, and $\gamma$- Proteobacteria. The fraction of AOB ranging from 77% to 54% was much higher than that of nitrite-oxidizing bacteria (0.4-0.9%), which might be the primary cause for the high and stable nitrite accumulation in the bioaugmented MBR.

Keywords

References

  1. Aakra, A., J. B. Utaker, I. F. Nes, and L. R. Bakken. 1999. An evaluated improvement of the extinction dilution method for isolation of ammonia-oxidizing bacteria. J. Microbiol. Methods 39: 23-31 https://doi.org/10.1016/S0167-7012(99)00094-9
  2. Amann, R. I. 1995. In situ identification of micro-organisms by whole cell hybridization with rRNA-targeted nucleic acid probes. Molecular Microbial Ecology Manual. Vol.3.3.6:1-15 Kluwer Academic Publishers, Dordrecht
  3. Antileo, C., A. Werner, G. Ciudad, C. Munoz, C. Borhardt, F. Jeison, and H. Urrutia. 2006. Novel operational strategy for partial nitrification to nitrite in a sequencing batch rotating disk reactor. Biochem. Eng. J. 32: 69-78 https://doi.org/10.1016/j.bej.2006.09.003
  4. APHA. 1998. Standard Methods of Examination of Water and Wastewater, 20th Ed. United Book Press, U.S.A
  5. Bae, W., S. Baek, J. Chung, and Y. Lee. 2002. Optimal operational factors for nitrite accumulation in batch reactors. Biodegradation 12: 359-366 https://doi.org/10.1023/A:1014308229656
  6. Bernet, N., O. Sanchez, D. Cesbron, J. P. Steyer, and J. P. Delgenes. 2005. Modeling and control of nitrite accumulation in a nitrifying biofilm reactor. Biochem. Eng. J. 24: 173-183 https://doi.org/10.1016/j.bej.2005.02.002
  7. Cebron, A., M. Coci, J. Garnier, and H. J. Laanbroek. 2004. Denaturing gradient gel electrophoresis analysis of ammoniaoxidizing bacterial community structure in the Lower Seine River: Impact of Paris wastewater effluents. Appl. Environ. Microbiol. 70: 6726-6737 https://doi.org/10.1128/AEM.70.11.6726-6737.2004
  8. Downing, A. L. and A. P. Hopwood. 1964. Some observations on the kinetics of nitrifying activated-sludge plants. Schweiz. Z. Hydrologie 26: 271-276 https://doi.org/10.1007/BF02504050
  9. Eichner, C. A., P. W. Erb, K. N. Timmis, and I. Wagner-Dobler. 1999. Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge community. Appl. Environ. Microbiol. 65: 102-109
  10. Groeneweg, J., B. Sejjner, and W. Tappe. 1994. Ammonia oxidation in Nitrosomonas at $NH_3$ concentrations near $K_m$: Effects of pH and temperature. Water Res. 28: 2561-2566 https://doi.org/10.1016/0043-1354(94)90074-4
  11. Kim, J. H., X. J. Guo, and H. S. Park. 2008. Comparison study of the effects of temperature and free ammonia concentration on nitrification and nitrite accumulation. Process Biochem. 43: 154-160 https://doi.org/10.1016/j.procbio.2007.11.005
  12. Kindaichi, T., T. Ito, and S. Okabe. 2004. Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization. Appl. Environ. Microbiol. 70: 1641-1650 https://doi.org/10.1128/AEM.70.3.1641-1650.2004
  13. Kowalchuk, G. A., J. R. Stephen, W. De Boer, J. I. Prosser, T. M. Embley, and J. W. Woldendorp. 1997. Analysis of ammoniaoxidizing bacteria of the $\beta$ subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl. Environ. Microbiol. 63: 1498-1497
  14. Kuai, L. and W. Verstraete. 1998. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system. Appl. Environ. Microbiol. 64: 4500-4506
  15. Louise, A., O'Sullivan, J. W. Andrew, and C. F. John. 2002. New degenerate Cytophaga-Flexibacter-Bacteroides-specific 16S ribosomal DNA-targeted oligonucleotide probes reveal high bacteria diversity in River Taff epilithon. Appl. Environ. Microbiol. 68: 201-210 https://doi.org/10.1128/AEM.68.1.201-210.2002
  16. Mobarry, B. K., M. Wagner, V. Urbain, B. E. Rittmann, and D. A. Stahl. 1996. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl. Environ. Biotechnol. 62: 2156-2162
  17. Muyzer, G., E. C. De Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700
  18. Nicolaisen, M. H. and N. B. Ramsing. 2002. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. Microbiol. Methods 50: 189-203 https://doi.org/10.1016/S0167-7012(02)00026-X
  19. Nogueira, R., L. F. Melo, U. Purkhold, S. Wuertz, and M. Wagner. 2002. Nitrifying and heterotrophic population dynamics in biofilm reactors: Effects of hydraulic retention time and the presence of organic carbon. Water Res. 36: 469-481 https://doi.org/10.1016/S0043-1354(01)00229-9
  20. Park, H. D., J. M. Regan, and D. R. Noguera. 2002. Molecular analysis of ammonia-oxidizing bacterial populations in aeratedanoxic Orbal processes. Water Sci. Technol. 46: 273-280
  21. Park, H. D. and D. R. Noquera. 2004. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Res. 38: 3275-3286 https://doi.org/10.1016/j.watres.2004.04.047
  22. Ruiz, G., D. Jeison, and R. Chamy. 2003. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Res. 37: 1371-1377 https://doi.org/10.1016/S0043-1354(02)00475-X
  23. Sekiguchi, H., N. Tomioka, T. Nakahara, and H. Uchiyama. 2001. A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis. Biotechnol. Lett. 23: 1205-1208 https://doi.org/10.1023/A:1010517117046
  24. Sinha, B. and A. P. Annachhatre. 2007. Assessment of partial nitrification reactor performance through microbial population shift using quinone profile, FISH and SEM. Bioresour. Technol. 98: 3602-3610 https://doi.org/10.1016/j.biortech.2006.11.034
  25. Tokutomi, T. 2004. Operation of a nitrite-type airlift reactor at low DO concentration. Water Sci. Technol. 49: 81-88
  26. Von Wintzingerode, F., U. B. Gobel, and E. Stackebrandt. 1997 Determination of microbial diversity in environmental samples: Pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21: 213-229 https://doi.org/10.1111/j.1574-6976.1997.tb00351.x
  27. Wagner, M., G. Rath, H. P. Koops, J. Flood, and R. Amann. 1996. In situ analysis of nitrifying bacteria in sewage treatment plants. Water Sci. Technol. 34: 237-244 https://doi.org/10.1016/0273-1223(96)00514-8
  28. Yoo, I. K., J. L. Kyoung, S. L. Won, J. K. Dong, and C. C. Gi. 2006. Study on operational factors in nitrite-accumulating submerged membrane bioreactor. J. Microbiol. Biotechnol. 16: 469-474
  29. Yun, H. J. and D. J. Kim. 2003. Nitrite accumulation characteristics of high strength ammonia wastewater in an autotrophic nitrifying biofilm reactor. J. Chem. Technol. Biotechnol. 78: 377-383 https://doi.org/10.1002/jctb.751
  30. Zhang, Y. X., J. T. Zhou, J. S. Zhang, and S. Z. Yuan. 2009. An innovative membrane bioreactor and packed-bed biofilm reactor combined system for shortcut nitrification-denitrification. J. Environ. Sci. 21: 568-574 https://doi.org/10.1016/S1001-0742(08)62309-8

Cited by

  1. Characterization of Bacterial Structures in a Two-Stage Moving-Bed Biofilm Reactor (MBBR) During Nitrification of the Landfill Leachate vol.20, pp.7, 2009, https://doi.org/10.4014/jmb.1001.01015
  2. Characterization of the Microbial Community in a Partial Nitrifying Sequencing Batch Biofilm Reactor vol.63, pp.6, 2009, https://doi.org/10.1007/s00284-011-0019-x
  3. Enhanced bio-decolorization of azo dyes by quinone-functionalized ceramsites under saline conditions vol.47, pp.2, 2009, https://doi.org/10.1016/j.procbio.2011.11.015
  4. Analysis of Microbial Population Dynamics in a Partial Nitrifying SBR at Ambient Temperature vol.66, pp.6, 2009, https://doi.org/10.1007/s00284-013-0317-6
  5. Influence of Alkalinity on Partial Nitrification Treating Domestic Sewage and the Microbial Community in MBR vol.807, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/amr.807-809.1564
  6. Modeling bioaugmentation with nitrifiers in membrane bioreactors vol.71, pp.1, 2009, https://doi.org/10.2166/wst.2014.456
  7. Nitrifying biomass characterization and monitoring during bioaugmentation in a membrane bioreactor vol.36, pp.24, 2009, https://doi.org/10.1080/09593330.2015.1055818
  8. Free nitrous acid and pH determine the predominant ammonia-oxidizing bacteria and amount of N2O in a partial nitrifying reactor vol.101, pp.4, 2009, https://doi.org/10.1007/s00253-016-7961-2
  9. Application of a composite membrane aerated biofilm with controllable biofilm thickness in nitrogen removal vol.95, pp.3, 2020, https://doi.org/10.1002/jctb.6277
  10. Impact of free ammonia and free nitrous acid on nitritation in membrane aerated bioreactors fed with high strength nitrogen urine dominated wastewater vol.10, pp.1, 2022, https://doi.org/10.1016/j.jece.2021.107001