DOI QR코드

DOI QR Code

Design and Expression of Recombinant Antihypertensive Peptide Multimer Gene in Escherichia coli BL21

  • Rao, Shengqi (State Key Laboratory of Food Science and Technology, Jiangnan University) ;
  • Su, Yujie (State Key Laboratory of Food Science and Technology, Jiangnan University) ;
  • Li, Junhua (State Key Laboratory of Food Science and Technology, Jiangnan University) ;
  • Xu, Zhenzhen (School of Food Science and Technology, Jiangnan University) ;
  • Yang, Yanjun (State Key Laboratory of Food Science and Technology, Jiangnan University)
  • Published : 2009.12.31

Abstract

The design and expression of an antihypertensive peptide multimer (AHPM), a common precursor of 11 kinds of antihypertensive peptides (AHPs) tandemly linked up according to the restriction sites of gastrointestinal proteases, were explored. The DNA fragment encoding the AHPM was chemically synthesized and cloned into expression vector pGEX-3X. After an optimum induction with IPTG, the recombinant AHPM fused with glutathione S-transferase (GST-AHPM) was expressed mostly as inclusion body in Escherichia coli BL21 and reached the maximal production, 35% of total intracellular protein. The inclusion body was washed, dissolved, and purified by cation-exchange chromatography under denaturing conditions, followed by refolding together with size-exclusion chromatography and gradual dialysis. The resulting yield of the soluble GSTAHPM (34 kDa) with a purity of 95% reached 399 mg/l culture. The release of high active fragments from the AHPM was confirmed by the simulated gastrointestinal digestion. The results suggest that the design strategy and production method of the AHPM will be useful to obtain a large quantity of recombinant AHPs at a low cost.

Keywords

References

  1. Alting, A. C., R. J. Meijer, and E. C. van Beresteijn. 1997. Incomplete elimination of the ABBOS epitope of bovine serum albumin under simulated gastrointestinal conditions of infants. Diabetes Care 20: 875-880 https://doi.org/10.2337/diacare.20.5.875
  2. Bettadapura, J., K. K. Menon, S. Moritz, J. Liu, and C. C. Bernard. 1998. Expression, purification, and encephalitogenicity of recombinant human myelin oligodendrocyte glycoprotein. J. Neurochem. 70: 1593-1599 https://doi.org/10.1046/j.1471-4159.1998.70041593.x
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  4. Byun, H. G. and S. K. Kim. 2001. Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin. Process Biochem. 36: 1155-1162 https://doi.org/10.1016/S0032-9592(00)00297-1
  5. Chen, G. W., J. S. Tsai, and B. S. Pan. 2007. Purification of angiotensin I-converting enzyme inhibitory peptides and antihypertensive effect of milk produced by protease-facilitated lactic fermentation. Int. Dairy J. 17: 641-647 https://doi.org/10.1016/j.idairyj.2006.07.004
  6. Cushman, D. W. and H. S. Cheung. 1971. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 20: 1637-1648 https://doi.org/10.1016/0006-2952(71)90292-9
  7. FitzGerald, R. J., B. A. Murray, and D. J. Walsh. 2004. Hypotensive peptides from milk proteins. J. Nutr. 134: 980-988
  8. Fujita, H., K. Yokoyama, and M. Yoshikawa. 2000. Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. J. Food Sci. 65: 564-569 https://doi.org/10.1111/j.1365-2621.2000.tb16049.x
  9. Fujita, H. and M. Yoshikawa. 1999. LKPNM: A prodrugtype ACE-inhibitory peptide derived from fish protein. Immunopharmacology 44: 123-127 https://doi.org/10.1016/S0162-3109(99)00118-6
  10. Fujita, H., K. Yokoyama, and M. Yoshikawa. 2000. Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. J. Food Sci. 65: 564-569 https://doi.org/10.1111/j.1365-2621.2000.tb16049.x
  11. Glasser, S. P. 2001. Hypertension syndrome and cardiovascular events. Postgrad. Med. 110: 29-36
  12. Israaili, Z. H. and W. D. Hall. 1992. Cough and angioneurotic edema associated with angiotensin converting enzyme inhibitor therapy: A review of the literature and pathophysiology. Ann. Intern. Med. 117: 234-242 https://doi.org/10.7326/0003-4819-117-3-234
  13. Jeong, D. W., D. S. Shin, C. W. Ahn, I. S. Song, and H. J. Lee. 2007. Expression of antihypertensive peptide, His-His-Leu, as tandem repeats in Escherichia coli. J. Microbiol. Biotechnol. 17: 952-959
  14. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  15. Li, G. H., G. W. Le, and Y. H. Shi. 2004. Shrestha, angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutr. Res. 24: 469-486
  16. Liu, D., H. Y. Sun, L. J. Zhang, and S. M. Li. 2007. High-level expression of milk-derived antihypertensive peptide in Escherichia coli and its bioactivity. J. Agric. Food Chem. 55: 5109-5112 https://doi.org/10.1021/jf0703248
  17. Lv, G. S., G. C. Huo, and X. Y. Fu. 2003. Expression of milkderived antihypertensive peptide in Escherichia coli. J. Dairy Sci. 86: 1927-1931 https://doi.org/10.3168/jds.S0022-0302(03)73779-5
  18. Makrides, S. C. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60: 512-538
  19. Marczak, E. D., H. Usui, H. Fujita, Y. J. Yang, M. Yokoo, A. W. Lipkowski, and M. Yoshikawa. 2003. New antihypertensive peptides isolated from rapeseed. Peptides 24: 791-798 https://doi.org/10.1016/S0196-9781(03)00174-8
  20. Megias, C., M. D. M. Yust, J. Pedroche, H. Lquari, J. Giron-Calle, M. Alaiz, F. Millan, and J. Vioque. 2004. Purification of an ACE inhibitory peptide after hydrolysis of sunflower (Helianthus annuus L.) protein isolates. J. Agric. Food Chem. 52: 1928-1932 https://doi.org/10.1021/jf034707r
  21. Megias, C., J. Pedroche, M. D. M. Yust, M. Alaiz, J. Giron-Calle, F. Millan, and J. Vioque. 2006. Affinity purification of angiotensin converting enzyme inhibitory peptides using immobilized ACE. J. Agric. Food Chem. 54: 7120-7124 https://doi.org/10.1021/jf061488b
  22. Murray, B. A. and R. J. FitzGerald. 2007. Angiotensin converting enzyme inhibitory peptides derived from food proteins: Biochemistry, bioactivity and production. Curr. Pharm. Des. 13: 773-791 https://doi.org/10.2174/138161207780363068
  23. Nakamura, Y., N. Yamamoto, K. Sakai, A. Okubo, S. Yamazaki, and T. Takano. 1995. Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk. J. Dairy Sci. 78: 777-783 https://doi.org/10.3168/jds.S0022-0302(95)76689-9
  24. Onishi, K., N. Matoba, Y. Yamada, N. Doyama, N. Maruyama, S. Utsumi, and M. Yoshikawa. 2004. Optimal designing of betaconglycinin to genetically incorporate RPLKPW, a potent antihypertensive peptide. Peptides 25: 37-43 https://doi.org/10.1016/j.peptides.2003.11.006
  25. Park, C. J., J. H. Lee, S. S. Hong, H. S. Lee, and S. C. Kim. 1998. High-level expression of the angiotensin-converting-enzymeinhibiting peptide, YG-1, as tandem multimers in Escherichia coli. Appl. Microbiol. Biotechnol. 50: 71-76 https://doi.org/10.1007/s002530051258
  26. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, U.S.A
  27. Sato, M., T. Hosokawa, T. Yamaguchi, T. Nakano, K. Muramoto, T. Kahara, K. Funayama, A. Kobayashi, and T. Nakano. 2002. Angiotensin I-converting enzyme inhibitory peptides derived from wakame (Undaria pinnatifida) and their antihypertensive effect in spontaneously hypertensive rats. J. Agric. Food Chem. 50: 6245-6252 https://doi.org/10.1021/jf020482t
  28. Smith, D. B. and K. S. Johnson. 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67: 31-40 https://doi.org/10.1016/0378-1119(88)90005-4
  29. Studier, F. W. and B. A. Moffatt. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189: 113-130 https://doi.org/10.1016/0022-2836(86)90385-2
  30. Tauzin, J., L. Miclo, and J. L. Gaillard. 2002. Angiotensin-Iconverting enzyme inhibitory peptides from tryptic hydrolysate of bovine alpha(S2)-casein. FEBS Lett. 531: 369-374 https://doi.org/10.1016/S0014-5793(02)03576-7
  31. Wang, J. P., J. E. Hu, J. Z. Cui, X. F. Bai, Y. G. Du, Y. Miyaguchi, and B. C. Lin. 2008. Purification and identification of a ACE inhibitory peptide from oyster proteins hydrolysate and the anti hypertensive effect of hydrolysate in spontaneously hypertensive rats. Food Chem. 111: 302-308 https://doi.org/10.1016/j.foodchem.2008.03.059
  32. Yamada, Y., N. Matoba, H. Usui, K. Onishi, and M. Yoshikawa. 2002. Design of a highly potent anti-hypertensive peptide based on ovokinin(2-7). Biosci. Biotech. Biochem. 66: 1213-1217 https://doi.org/10.1271/bbb.66.1213
  33. Yamamoto, N., M. Maeno, and T. Takano. 1999. Purification and characterization of an antihypertensive peptide from a yogurt-like product fermented by Lactobacillus helveticus CPN4. J. Dairy Sci. 82: 1388-1393 https://doi.org/10.3168/jds.S0022-0302(99)75364-6
  34. Yamamoto, S., I. Toida, and K. Iwai. 1980. Re-examination of the spectrophotometric assay for serum angiotensin-converting enzyme. Nippon Kyobu Shippei Kaishi 18: 297-303

Cited by

  1. Design of substrate-type ACE inhibitory pentapeptides with an antepenultimate C-terminal proline for efficient release of inhibitory activity vol.60, pp.None, 2009, https://doi.org/10.1016/j.bej.2011.09.018
  2. Expression, renaturation and biological activity of recombinant conotoxin GeXIVAWT vol.97, pp.3, 2013, https://doi.org/10.1007/s00253-012-4287-6
  3. Current Perspectives on Antihypertensive Probiotics vol.9, pp.2, 2009, https://doi.org/10.1007/s12602-016-9241-y
  4. Expression of multiple antihypertensive peptides as a fusion protein in the chloroplast of Chlamydomonas reinhardtii vol.30, pp.3, 2009, https://doi.org/10.1007/s10811-017-1339-4
  5. Anti-Hypertensive Peptides Derived from Caseins: Mechanism of Physiological Action, Production Bioprocesses, and Challenges for Food Applications vol.185, pp.4, 2009, https://doi.org/10.1007/s12010-018-2692-8
  6. Insertions of antihypertensive peptides and their applications in pharmacy and functional foods vol.103, pp.6, 2019, https://doi.org/10.1007/s00253-019-09633-1
  7. Current genetic engineering strategies for the production of antihypertensive ACEI peptides vol.117, pp.8, 2020, https://doi.org/10.1002/bit.27373