DOI QR코드

DOI QR Code

Production of c9,t11- and t10,c12-conjugated Linoleic Acids in Humans by Lactobacillus rhamnosus PL60

  • Lee, Ki-Eun (Culture Collection of Antimicrobial Resistant Microbes, Department of Biology, Seoul Women's University) ;
  • Lee, Yeon-Hee (Culture Collection of Antimicrobial Resistant Microbes, Department of Biology, Seoul Women's University)
  • Published : 2009.12.31

Abstract

Lactobacillus rhamnosus PL60 was tested for whether it can produce c9,t11- and t10,c12-conjugated linoleic acids (CLAs) in human. After consumption of L. rhamnosus PL60, L. rhamnosus was detected in feces 1 week after the start of intake. Analysis by gas chromatography showed that concentrations of c9,t11- and t10,c12-CLAs in serum had increased and concentrations of serum leptin had significantly decreased. Results showed that L. rhamnosus PL60 can survive in human intestines and produce CLAs in humans. This is the first report that bacteria can produce CLAs in humans.

Keywords

References

  1. Coakley, M., M. C. Johnson, E. McGrath, S. Rahman, R. P. Ross, G. F. Fitzgerald, R. Devery, and C. Stanton. 2006. Intestinal bifidobacteria that produce trans-9, trans-11 conjugated linoleic acid: A fatty acid with antiproliferative activity against human colon SW480 and HT-29 cancer cells. Nutr. Cancer 56: 95-102 https://doi.org/10.1207/s15327914nc5601_13
  2. Kepler, C. R., K. P. Hirons, J. J. McNeill, and S. B. Tove. 1966. Intermediates and products of the biohydrogenation of linoleic acid by Butyrivibrio fibrisolvens. J. Biol. Chem. 241: 1350-1354
  3. Lee, H. Y., J. H. Park, S. H. Seok, M. W. Baek, D. J. Kim, K. E. Lee, K. S. Paek, Y. Lee, and J. H. Park. 2006. Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in dietinduced obese mice. Biochim. Biophys. Acta 1791: 736-744 https://doi.org/10.1016/j.bbalip.2006.05.007
  4. Mougios, V., A. Matsakas, A. Petridou, S. Ring, A. Sagredos, A. Melissopoulou, N. Tsigilis, and M. Nikolaidis. 2001. Effect of supplementation with conjugated linoleic acid on human serum lipids and body fat. J. Nutr. Biochem. 12: 585-594 https://doi.org/10.1016/S0955-2863(01)00177-2
  5. Ogawa, J., S. Kishino, A. Ando, S. Sugimoto, K. Mihara, and S. Shimizu. 2005. Production of conjugated fatty acids by lactic acid bacteria. J. Biosci. Bioeng. 100: 355-364 https://doi.org/10.1263/jbb.100.355
  6. Pariza, M. W. 2004. Perspective on the safety and effectiveness of conjugated linoleic acid. Am. J. Clin. Nutr. 79: 1132S-1136S
  7. Petridou, A., V. Mougios, and A. Sagredos. 2003. Supplementation with CLA: Isomer incorporation into serum lipids and effect on body fat of women. Lipids 38: 805-811 https://doi.org/10.1007/s11745-003-1129-2
  8. Prais Botelho, A., L. F. Santos-Zago, and A. Costa de Oliveira. 2008. Conjugated linoleic acid supplementation modified the body composition and serum leptin levels in weaning rats. Arch. Latinoam. Nutr. 58: 156-163
  9. Song, Y., N. Kato, C. Liu, Y. Matsumiya, H. Kato, and K. Watanabe. 2000. Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using groupand species-specific primers derived from the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA. FEMS Microbiol. Lett. 187: 167-173 https://doi.org/10.1111/j.1574-6968.2000.tb09155.x
  10. Steck, S. E., A. M. Chalecki, P. Miller, J. Conway, G. L. Austin, J. W. Hardin, C. D. Albright, and P. Thuillier. 2007. Conjugated linoleic acid supplementation for twelve weeks increases lean body mass in obese humans. J. Nutr. 137: 1188-1193
  11. Whigham, L. D., A. C. Watras, and D. A. Schoeller. 2007. Efficacy of conjugated linoleic acid for reducing fat mass: A meta-analysis in humans. Am. J. Clin. Nutr. 85: 1203-1211

Cited by

  1. Production of conjugated linoleic acid by food‐grade bacteria: A review vol.65, pp.4, 2009, https://doi.org/10.1111/j.1471-0307.2012.00871.x
  2. Bacterial Production of Conjugated Linoleic and Linolenic Acid in Foods: A Technological Challenge vol.55, pp.11, 2009, https://doi.org/10.1080/10408398.2012.706243
  3. Screening of Lactobacillus strains for their ability to produce conjugated linoleic acid in milk and to adhere to the intestinal tract vol.98, pp.10, 2009, https://doi.org/10.3168/jds.2014-8515
  4. Evaluation of Survival, Free Radical Scavenging and Human Enterocyte Adherence Potential of Lactobacilli with Anti‐Obesity and Anti‐Inflammatory CLA Isomer‐Producing Attributes vol.39, pp.6, 2009, https://doi.org/10.1111/jfpp.12538
  5. Sources and Bioactive Properties of Conjugated Dietary Fatty Acids vol.51, pp.4, 2009, https://doi.org/10.1007/s11745-016-4135-z
  6. Lactic Acid Bacteria and Bifidobacteria with Potential to Design Natural Biofunctional Health-Promoting Dairy Foods vol.8, pp.None, 2009, https://doi.org/10.3389/fmicb.2017.00846
  7. Members of the Lactobacillus Genus Complex (LGC) as Opportunistic Pathogens: A Review vol.7, pp.5, 2019, https://doi.org/10.3390/microorganisms7050126