참고문헌
- Agar, J. N., C. Krebs, J. Frazzon, B. H. Huynh, D. R. Dean, and M. K. Johnson. 2000. IscU as a scaffold for iron-sulfur cluster biosynthesis: Sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry 39: 7856-7862 https://doi.org/10.1021/bi000931n
- Becher, A. and H. P. Schweizer. 2000. Integration-proficient Pseudomonas aeruginosa vectors for isolation of single-copy chromosomal lacZ and lux gene fusions. Biotechniques 29: 948-950
- Choi, Y.-S., D.-H. Shin, I.-Y. Chung, S.-H. Kim, Y.-J. Heo, and Y.-H. Cho. 2007. Identification of Pseudomonas aeruginosa genes crucial for hydrogen peroxide resistance. J. Microbiol. Biotechnol. 17: 1344-1352
- D'Argenio, D. A., L. A. Gallagher, C. A. Berg, and C. Manoil. 2001. Drosophila as a model host for Pseudomonas aeruginosa infection. J. Bacteriol. 183: 1466-1471 https://doi.org/10.1128/JB.183.4.1466-1471.2001
- Dean, R. T., S. Fu, R. Stocker, and M. J. Davies. 1997. Biochemistry and pathology of radical-mediated protein oxidation. Biochem. J. 324: 1-18
- Deisseroth, A. and A. L. Dounce. 1970. Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role. Physiol. Rev. 50: 319-375
- Ding, H. and R. J. Clark. 2004. Characterization of iron binding in IscA, an ancient iron-sulphur cluster assembly protein. Biochem. J. 379: 433-440 https://doi.org/10.1042/BJ20031702
- Flint, D. H., J. F. Tuminello, and T. J. Miller. 1996. Studies on the synthesis of the Fe-S cluster of dihydroxy-acid dehydratase in Escherichia coli crude extract. Isolation of O-acetylserine sulfhydrylases A and B and beta-cystathionase based on their ability to mobilize sulfur from cysteine and to participate in Fe-S cluster synthesis. J. Biol. Chem. 271: 16053-16067 https://doi.org/10.1074/jbc.271.27.16053
-
Giel, J. L., D. Rodionov, M. Liu, F. R. Blattner, and P. J. Kiley. 2006. IscR-dependent gene expression links iron-sulphur cluster assembly to the control of
$O_2$ -regulated genes in Escherichia coli. Mol. Microbiol. 60: 1058-1075 https://doi.org/10.1111/j.1365-2958.2006.05160.x - Halliwell, B. and J. M. Gutteridge. 1990. Role of free radicals and catalytic metal ions in human disease: An overview. Meth. Enzymol. 186: 1-88 https://doi.org/10.1016/0076-6879(90)86093-B
- Hassett, D. J., E. Alsabbagh, K. Parvatiyar, M. L. Howell, R. W. Wilmott, and U. A. Ochsner. 2000. A protease-resistant catalase, KatA, released upon cell lysis during stationary phase is essential for aerobic survival of a Pseudomonas aeruginosa oxyR mutant at low cell densities. J. Bacteriol. 182: 4557-4563 https://doi.org/10.1128/JB.182.16.4557-4563.2000
- Heo, Y. J., I.-Y. Chung, K. B. Choi, G. W. Lau, and Y.-H. Cho. 2007. Genome sequence comparison and superinfection between two related Pseudomonas aeruginosa phages, D3112 and MP22. Microbiology 153: 2885-2895 https://doi.org/10.1099/mic.0.2007/007260-0
- Heo, Y. J., I.-Y. Chung, K. B. Choi, and Y.-H. Cho. 2007. R-Type pyocin is required for competitive growth advantage between Pseudomonas aeruginosa strains. J. Microbiol. Biotechnol. 17: 180-185
- Hoff, K. G., J. J. Silberg, and L. E. Vickery. 2000. Interaction of the iron-sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 97: 7790-7795 https://doi.org/10.1073/pnas.130201997
- Huet, G., M. Daffe, and I. Saves. 2005. Identification of the Mycobacterium tuberculosis SUF machinery as the exclusive mycobacterial system of [Fe-S] cluster assembly: Evidence for its implication in the pathogen's survival. J. Bacteriol. 187: 6137-6146 https://doi.org/10.1128/JB.187.17.6137-6146.2005
- Imlay, J. A. 2006. Iron-sulphur clusters and the problem with oxygen. Mol. Microbiol. 59: 1073-1082 https://doi.org/10.1111/j.1365-2958.2006.05028.x
- Imlay, J. A., S. M. Chin, and S. Linn. 1998. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240: 640-642 https://doi.org/10.1126/science.2834821
- Kiley, P. J. and H. Beinert. 2003. Role of Fe-S clusters in sensing and regulating bacterial growth. Curr. Opin. Microbiol. 6: 181-185 https://doi.org/10.1016/S1369-5274(03)00039-0
- Krebs, C. J., N. Agar, A. D. Smith, J. Frazzon, D. R. Dean, B. H. Huynh, and M. K. Johnson. 2001. IscA, an alternate scaffold for Fe-S cluster biosynthesis. Biochemistry 40: 14069-14080 https://doi.org/10.1021/bi015656z
- Lee, J.-S., Y.-J. Heo, J.-K. Lee, and Y.-H. Cho. 2005. KatA, the major catalase, is critical for osmoprotection and virulence in Pseudomonas aeruginosa PA14. Infect. Immun. 73: 4399-4403 https://doi.org/10.1128/IAI.73.7.4399-4403.2005
- Ma, J. F., U. A. Ochsner, M. G. Klotz, V. K. Nanayakkara, M. L. Howell, Z. Johnson, et al. 1999. Bacterioferritin A modulates catalase A (KatA) activity and resistance to hydrogen peroxide in Pseudomonas aeruginosa. J. Bacteriol. 181: 3730-3742
- Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
- Nachin, L., M. El Hassouni, L. Loiseau, D. Expert, and F. Barras. 2001. SoxR-dependent response to oxidative stress and virulence of Erwinia chrysanthemi: The key role of SufC, an orphan ABC ATPase. Mol. Microbiol. 39: 960-972 https://doi.org/10.1046/j.1365-2958.2001.02288.x
- Patzer, S. I. and K. Hantke. 1999. SufS is a NifS-like protein, and SufD is necessary for stability of the [2Fe-2S] FhuF protein in Escherichia coli. J. Bacteriol. 181: 3307-3309
- Rahme, L. G., E. J. Stevens, S. F. Wolfort, J. Shao, R. G. Tompkins, and F. M. Ausubel. 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268: 1899-1902 https://doi.org/10.1126/science.7604262
- Ratledge, C. and L. G. Dover. 2000. Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol. 54: 881-941 https://doi.org/10.1146/annurev.micro.54.1.881
- Schwartz, C. J., J. L. Giel, T. Patschkowski, C. Luther, F. J. Ruzicka, H. Beinert, and P. J. Killey. 2001. IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proc. Natl. Acad. Sci. U.S.A. 98: 14895-14900 https://doi.org/10.1073/pnas.251550898
- Schweizer, H. P. 1991. Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. Gene 97: 109-121 https://doi.org/10.1016/0378-1119(91)90016-5
- Scott, M. D. and J. W. Eaton. 1996. Superoxide is not the proximate cause of paraquat toxicity. Redox Report 2: 113-119
- Shin, D.-H., Y.-S. Choi, and Y.-H. Cho. 2008. Unusual properties of catalase A (KatA) of Pseudomonas aeruginosa PA14 are associated with its biofilm peroxide resistance. J. Bacteriol. 190: 2663-2670 https://doi.org/10.1128/JB.01580-07
- Sies, H. 1991. Oxidative Stress. Academic Press Ltd., Orlando, FL
- Smith, A. D., J. N. Agar, K. A. Johnson, J. Frazzon, I. J. Amster, D. R. Dean, and M. K. Johnson. 2001. Sulfur transfer from IscS to IscU: The first step in iron-sulfur cluster biosynthesis. J. Am. Chem. Soc. 123: 11103-11104 https://doi.org/10.1021/ja016757n
- Sonnleitner, E., S. Hagens, F. Rosenau, S. Wilhelm, A. Habel, K. E. Jager, and U. Blasi. 2003. Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microb. Pathog. 35: 217-228 https://doi.org/10.1016/S0882-4010(03)00149-9
- Tokumoto, U., S. Kitamura, K. Fukuyama, and Y. Takahashi. 2004. Interchangeability and distinct properties of bacterial Fe-S cluster assembly systems: Functional replacement of the isc and suf operons in Escherichia coli with the nifSU-like operon from Helicobacter pylori. J. Biochem. 136: 199-209 https://doi.org/10.1093/jb/mvh104
- Urbina, H. D., J. J. Silberg, K. G. Hoff, and L. E. Vickery. 2001. Transfer of sulfur from IscS to IscU during Fe/S cluster assembly. J. Biol. Chem. 276: 44521-44526 https://doi.org/10.1074/jbc.M106907200
- Yeo, W.-S., J.-H. Lee, K.-C. Lee, and J.-H. Roe. 2006. IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe-S assembly proteins. Mol. Microbiol. 61: 206-218 https://doi.org/10.1111/j.1365-2958.2006.05220.x
피인용 문헌
- Iron-containing transcription factors and their roles as sensors vol.15, pp.2, 2009, https://doi.org/10.1016/j.cbpa.2011.01.006
- Bacterial Iron-Sulfur Regulatory Proteins As Biological Sensor-Switches vol.17, pp.9, 2009, https://doi.org/10.1089/ars.2012.4511
- The Drosophila melanogaster host model vol.4, pp.1, 2012, https://doi.org/10.3402/jom.v4i0.10368
- Biogenesis of [Fe-S] cluster in Firmicutes: an unexploited field of investigation vol.104, pp.3, 2013, https://doi.org/10.1007/s10482-013-9966-5
- Genome-wide fitness profiling reveals adaptations required by Haemophilus in coinfection with influenza A virus in the murine lung vol.110, pp.38, 2009, https://doi.org/10.1073/pnas.1311217110
- Low cell density regulator AphA upregulates the expression of Vibrio vulnificus iscR gene encoding the Fe-S cluster regulator IscR vol.52, pp.5, 2009, https://doi.org/10.1007/s12275-014-3592-4
- IscR Is a Global Regulator Essential for Pathogenesis of Vibrio vulnificus and Induced by Host Cells vol.82, pp.2, 2014, https://doi.org/10.1128/iai.01141-13
- IscR Is Essential for Yersinia pseudotuberculosis Type III Secretion and Virulence vol.10, pp.6, 2009, https://doi.org/10.1371/journal.ppat.1004194
- The Iron-Sulphur Cluster Biosynthesis Regulator IscR Contributes to Iron Homeostasis and Resistance to Oxidants in Pseudomonas aeruginosa vol.9, pp.1, 2009, https://doi.org/10.1371/journal.pone.0086763
- Catalase (KatA) Plays a Role in Protection against Anaerobic Nitric Oxide in Pseudomonas aeruginosa vol.9, pp.3, 2014, https://doi.org/10.1371/journal.pone.0091813
- Bacterial iron-sulfur cluster sensors in mammalian pathogens vol.7, pp.6, 2015, https://doi.org/10.1039/c5mt00012b
- IscR Regulates Synthesis of Colonization Factor Antigen I Fimbriae in Response to Iron Starvation in Enterotoxigenic Escherichia coli vol.197, pp.18, 2009, https://doi.org/10.1128/jb.00214-15
- The FinR-regulated essential gene fprA , encoding ferredoxin NADP + reductase: Roles in superoxide-mediated stress protection and virulence of Pseudomonas aeruginosa vol.12, pp.2, 2017, https://doi.org/10.1371/journal.pone.0172071
- The iron–sulfur cluster sensor IscR is a negative regulator of Spi1 type III secretion system in Salmonella enterica vol.19, pp.4, 2017, https://doi.org/10.1111/cmi.12680
- Iron-sulfur cluster biosynthesis and trafficking - impact on human disease conditions vol.10, pp.1, 2009, https://doi.org/10.1039/c7mt00180k
- Pseudomonas aeruginosa ttcA encoding tRNA-thiolating protein requires an iron-sulfur cluster to participate in hydrogen peroxide-mediated stress protection and pathogenicity vol.8, pp.None, 2009, https://doi.org/10.1038/s41598-018-30368-y
- Antibacterial strategies inspired by the oxidative stress and response networks vol.57, pp.3, 2009, https://doi.org/10.1007/s12275-019-8711-9
- Propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) assay for rapid detection of viable and viable but non-culturable (VBNC) Pseudomonas aeruginosa in swimming pools vol.17, pp.1, 2009, https://doi.org/10.1007/s40201-019-00359-w
- Oligoribonuclease Contributes to Tolerance to Aminoglycoside and β-Lactam Antibiotics by Regulating KatA in Pseudomonas aeruginosa vol.63, pp.6, 2009, https://doi.org/10.1128/aac.00212-19
- Differential expression of the major catalase, KatA in the two wild type Pseudomonas aeruginosa strains, PAO1 and PA14 vol.57, pp.8, 2009, https://doi.org/10.1007/s12275-019-9225-1
- Transposon mutagenesis and identification of mutated genes in growth-delayed Edwardsiella ictaluri vol.19, pp.None, 2019, https://doi.org/10.1186/s12866-019-1429-3
- The transcriptional regulator IscR integrates host-derived nitrosative stress and iron starvation in activation of the vvhBA operon in Vibrio vulnificus vol.295, pp.16, 2009, https://doi.org/10.1074/jbc.ra120.012724
- Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors vol.22, pp.6, 2009, https://doi.org/10.3390/ijms22063128
- Genome Scale Analysis Reveals IscR Directly and Indirectly Regulates Virulence Factor Genes in Pathogenic Yersinia vol.12, pp.3, 2009, https://doi.org/10.1128/mbio.00633-21
- Oxidative Stress Response in Pseudomonas aeruginosa vol.10, pp.9, 2021, https://doi.org/10.3390/pathogens10091187
- Potential genes associated with survival of Acinetobacter baumannii under ciprofloxacin stress vol.23, pp.9, 2009, https://doi.org/10.1016/j.micinf.2021.104844
- Bacterial Approaches for Assembling Iron-Sulfur Proteins vol.12, pp.6, 2009, https://doi.org/10.1128/mbio.02425-21