
564 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 11, NO. 6, DECEMBER 2009

Redundancy Minimizing Techniques for Robust
Transmission in Wireless Networks

Anna Kacewicz and Stephen B. Wicker

Abstract: In this paper, we consider a wireless multiple path net-
work in which a transmitting node would like to send a message
to the receiving node with a certain probability of success. These
two nodes are separated by N erasure paths, and we devise two
algorithms to determine minimum redundancy and optimal sym-
bol allocation for this setup. We discuss the case with N = 3
and then extend the case to an arbitrary number of paths. One
of the algorithms minimum redundancy algorithm in exponential
time is shown to be optimal in several cases, but has exponential
running time. The other algorithm, minimum redundancy algo-
rithm in polynomial time, is sub-optimal but has polynomial worst-
case running time. These algorithms are based off the theory of
maximum-distance separable codes. We apply the MRAET algo-
rithm on maximum-distance separable, Luby transform, and Rap-
tor codes and compare their performance.

Index Terms: Error correction coding, multiple path channels, net-
works, redundancy, robustness.

I. INTRODUCTION AND RELATED WORK

Wireless networks are being increasingly used to down-
load/transmit a large amount of data. This data is subject to
deterioration because it is sent through the air rather than a
more reliable medium. Not only are wireless networks suscep-
tible to noise, but are also more vulnerable to malicious or un-
cooperating nodes. The messages sent across a wireless network
should be received without error in a short amount of time re-
gardless of the increased disturbance levels. Hence, it is useful
to devise coding methods and algorithms to ensure message in-
tegrity across wireless channels. While redundancy increases
network robustness, it also reduces network efficiency. This sug-
gests the importance of minimally increasing the message length
as to guarantee an aspired degree of network reliability.

In this paper, we consider a multiple path wireless network
through which a source-destination pair would like to commu-
nicate. Moreover, the presence of adversaries on some paths
may cause information to be lost or corrupted. We model the
presence of a malicious node as an erasure channel. The era-
sure channel is a type of wireless channel in which packets for-
warded through that channel are either fully received or erased
with a certain probability. For security purposes, we assume that
the message is encrypted by a standard encryption technique.
The erasure channel assumption is feasible since the encryption
allows the destination node to validate data it receives, mean-
ing that if the node receives corrupted data then that data will

Manuscript received April 29, 2009.
The authors are with the School of Electrical and Computer Engi-

neering, Cornell University, Ithaca, NY 14853, email: ak387@cornell.edu,
wicker@ece.cornell.edu.

be thrown out and treated as an erasure. Malicious nodes may
also steal messages, causing the receiving node to observe an
erasure. The path erasure probabilities are associated with the
degree to which they can be trusted.

In [1], the authors suggest a protocol for secure message
transmission in a multipath channel. They generate a method
to assess the“trustworthiness” of each path based on previous
behavior, and the paths which are trusted above a certain thresh-
old are put in the active path set (APS). The “rustworthiness”
level of a path is directly linked to the probability of successful
transmission. The paths in the APS are then used to transport
messages. We assume a similar scenario and then use the path
security levels to strategically transmit data.

Wireless networks such as mobile ad hoc networks or sen-
sor networks have frequent changes in topology due to link fail-
ures, physical obstructions, network intrusions, etc. Dependabil-
ity on these sort of networks requires dynamic algorithms which
quickly determine routing, redundancy, etc. for deviations in the
network. In [2], we introduce algorithms to dynamically deter-
mine the redundancy and message dispersion among the path.

There is a vast array of work done on routing in multipath
channels. In [3], the authors introduce a method to find max-
imally disjoint paths. We assume that the independent paths in
our setup were found in a similar fashion. In their paper they
transmit information down these paths assuming that they have
the same security level. In [4], the authors discuss a multi-
path routing technique over equally reliable links. They devise
a method to optimally allocate channel coded packets down the
paths by maximizing the success probability. The problem with
this method is the low network efficiency. In another paper [5],
the authors remove the assumption that the paths have the same
performance. They determine an approximation of the success
probability for the network and then allocate packets down each
path as to maximize this function. They do not consider the
question of how much redundancy to add to the original mes-
sage, and just assume that it is a pre-determined number. In
this paper we discuss algorithms which determine the minimum
redundancy and optimal symbol allocation to achieve a target
probability of success.

Redundancy is vital in erasure channels since it allows perfect
decoding even with some erasures. Maximum distance separa-
ble (MDS) codes are important examples of erasure codes since
they have the property that only a set the size of the input sym-
bols is required to perfectly decode the message. Our algorithms
are based on the structure of MDS codes. In [1], the authors also
use redundancy in the form of an erasure code which is based off
of Rabin’s algorithm [6]. A widely used MDS code is the Reed-
Solomon code [7].

Our main contribution in this paper include the design of two

1229-2370/09/$10.00 c© 2009 KICS

KACEWICZ AND WICKER: REDUNDANCY MINIMIZING TECHNIQUES FOR ROBUST... 565

algorithms minimum redundancy algorithm in exponential time
(MRAET) and minimum redundancy algorithm in polynomial
time (MRAPT) to determine minimum redundancy and opti-
mal symbol allocation to attain a probability of success. We
compare the performance of the algorithms with respect to each
other and the desired success level. We test and compare these
algorithms on three different error-correction codes, namely
minimum-distance separable (MDS), Luby transform (LT), and
Raptor codes. Also, we design the MDS, LT, and Raptor code
parameters to be compatible with the algorithms. The perfor-
mance of the codes is evaluated using the MRAET algorithm.

This paper is organized as follows. In Section II, we discuss
necessary background information on the error-correction codes
that we use and our system model. Section III discusses the ba-
sic case where there are N = 3 paths, and next in Section IV,
we move on to the algorithms for the case with an arbitrary num-
ber of paths. Further, the parameters for the codes we used are
discussed in Section V and their performance is simulated in
Section VI. Finally, in Section VII, we conclude the paper.

II. PROBLEM SETUP AND BACKGROUND
INFORMATION

We assume that we have a source node who has to convey
information to a destination node. These two nodes are sepa-
rated by multiple wireless paths, each acting like an indepen-
dent erasure channel. An erasure on a particular path could be
caused by a malicious node which is stealing or tampering with
data. The data is encrypted with a standard encryption algo-
rithm which allows the destination to determine if an adversary
has corrupted a path. Hence each path is associated with a pre-
determined erasure probability which represents its “trustwor-
thiness” level. Let path i have a probability of success pi. With-
out loss of generality, we assume that p1 ≥ p2 ≥ · · · ≥ pN
given that there are N paths. The transmitting node knows the
statistics of the channels between itself and the receiving node,
and hopes the message can be decoded within probability of suc-
cess p∗. The source node needs an algorithm that increases the
length of the message and allocates symbols down the paths so
that p∗ is achieved. Since the security level on the paths changes
over time, this algorithm also needs to be dynamic.

Erasure channels are discrete memoryless channels in which
individual packets are received without an error or not received
at all. Typical network protocols often use a feedback channel
to mitigate the effects of an erasure channel, through which the
receiver notifies the sender of any lost packets. Classic Shan-
non theory has shown that the capacity of a discrete memoryless
channel with feedback is equivalent to the same channel with-
out feedback, implying that feedback channels are wasteful and
unnecessary for this class of channels. Digital Fountain Codes
are a class of sparse-graph codes designed for erasure channels.
Unlike typical codes used for erasure channels, such as Reed-
Solomon (RS) codes, fountain codes are rateless codes mean-
ing that the symbols can be determined on the fly. For exam-
ple using an (n, k) RS code, one must determine the code rate
r = k/n based on the probability of erasure prior to transmit-
ting. Since Reed-Solomon codes are MDS codes, this implies
that any k symbols out of n can be used to reconstruct the orig-

inal message. We will elaborate on MDS codes in the next sec-
tion. If the estimated success probability of the channel is too
high causing the destination to receive less than k symbols, then
the message cannot be decoded. For erasure channels one wants
a simple way to expand the code leading to a lower rate code. In
1998, Luby created digital fountain codes called LT codes. In
2002 he created the first company, Digital Fountain, which dealt
with sparse graph codes. We go into the details and intuition of
LT codes in a later section [8].

A. Maximum-Distance Separable (MDS) Codes

MDS codes have a beautiful property which makes them par-
ticularly amenable for erasure channels. Next we mention the
background information to understand this special class of codes
[9].

Definition 1: Hamming Distance
The hamming distance between two codewords u,v of length n
is the number of positions in which they differ or,

dHamming(u,v) = d(u,v) = |{i|ui �= vi, i = 0, 1, . . . , n− 1}|.
Definition 2: Minimum Distance of a Code

The minimum distance dmin of a code is the minimum Hamming
distance between all distinct codewords in the codebook.
An (n, k) code is one which starts with a message of length k
and encodes it to a codeword of length n, or adds n−k redundant
symbols. We call the ratio n

k = γ.
Theorem 1: Singleton Bound

The minimum distance dmin for an (n, k) code is bounded by

dmin ≤ n− k + 1.

Definition 3: Maximum-Distance Separable Code
Maximum-distance separable (MDS) codes meet the Singleton
Bound with equality, or:

dmin = n− k + 1.

From [9] it is known that for an (n, k) MDS code in systematic
form, any combination of k out of the n codeword symbols al-
lows for perfect recovery of the original message. This attribute
serves well in erasure channel scenarios because, with complete
certainty, a message can be decoded with up to n− k erasures.

An important and well known MDS code is the RS code. RS
codes are thus excellent candidates for channels with bursts of
error such as CD’s, DVD’s, and the newer blu-ray discs. The
reason for this is the fact that these data discs get errors when
the disc gets scratched or dirty in a specific area resulting in er-
ror bursts. In particular, the CD uses a form of RS code called
cross-interleaved RS codes or CIRC. CIRC is composed of the
concatenation of two layers of an RS code separated by an in-
terleaver.

RS codes are extremely useful since their codewords are max-
imally spaced apart, though there is a trade-off between this
property and running time complexity. The encoding and de-
coding times for an RS code are quadratic with the codeword
size. This implies that these codes are optimal for small mes-
sage and codeword size. The problem is that most applications
require fairly large source sizes. In the next section, LT codes
are introduced, which are almost MDS codes and have reduced
running times. For further theory on the RS code we encourage
the reader to go to [7].

566 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 11, NO. 6, DECEMBER 2009

B. Luby Transform (LT) Codes

A simple analogy to LT codes is holding a bucket and catch-
ing drops until a sufficient amount of drops are caught. The
codes can be thought of as the balls and bins problem, where
the bins represent the input symbols and the balls being the en-
coded symbols. The question is, how many balls does one have
to throw so that with probability 1− δ each bin has at least one
ball. Given that there are k bins, the number of balls should be
around k log(k/δ)[8]. This yields small encoding and decodings
times both on the order of k log(k/δ). We will first introduce the
encoding and decoding algorithms for the LT codes.

Suppose we have a source message m1m2 . . .mk, and we
wish to form an output symbol ci. The encoding of the message
goes as follows:

1. Pick dn from a degree distribution ρ(d). The specifics of
ρ(d) will be revealed below.

2. Choose dn distinct input packets uniformly at random and
call the set of their indices Idn

. Then, using modulo 2 arith-
metic, cn =

∑
j:j∈Idn

mj .

These codes are sparse because the constructed degree distribu-
tion results in a mean degree that is considerably smaller than
k. There are many different ways to relay the degree and edge
connectivity of the graph to the decoder such as synchronized
clock, sending header containing a key, etc.

Successful decoding depends on the degree distribution used
and the edges in the graph G. The decoding is quite simple due
to the encoding structure and is a simplified version of the be-
lief propagation algorithm, also known as the sum-product algo-
rithm [10]. Using terminology as in [11], the ripple represents
the set of output symbols of degree one. If the decoding algo-
rithm reaches a point where the ripple is empty prior to decoding
all the input symbols, then the receiver fails to obtain the source
message. Hence, it is vital to design a degree distribution which
assures with high probability that the ripple is always nonempty
before all the input symbols are found and also that all the input
symbols are connected to at least one output symbol. In theory,
the ideal degree distribution is called the ideal soliton distribu-
tion,

ρ(1) = 1/k

ρ(d) =
1

d(d− 1)
for d = 2, 3, · · ·, k

which behaves as it should in expectation. The expected degree
of this distribution is about log k. The problem with this distri-
bution is that even the smallest oscillation around the expected
degree results in the failure of the decoding algorithm because
there is no degree one check node. To take care of this issue,
Luby introduced a slightly altered degree distribution which he
calls the robust soliton distribution [8]. This distribution avoids
the problem of not having an output node with degree one by
guaranteeing that the expected number of degree one outputs is
approximately R = c log(k/δ)

√
k (c > 0). The robust soliton

distribution is:

μ(d) =
ρ(d) + τ(d)

Z

where Z =
∑

d ρ(d) + τ(d) and τ(d) is defined as follows,

τ(d) =

⎧
⎨

⎩

R
kd , for d = 1, 2, · · · , k

R − 1
R
k log(Rδ), for d = k

R

0, for d > k
R .

Using this distribution there need to be at least n = kR encoded
symbols so that with probability 1 − δ we can successfully de-
code the message [8]. An extension of LT codes include Raptor
codes, which have a linear encoding and decoding time [12].

C. Raptor Codes

Raptor codes are a class of fountain codes which have the
property that encoding and decoding have a constant cost (in
the per symbol sense). LT codes have a per symbol decoding
on the order of O(log(k)) since the decoding graph must have
roughly k log(k) edges to ensure that the input symbols are all
covered with high probability. Raptor codes diminish this con-
dition to having a certain fraction of recoverable input nodes,
which results in constant decoding cost [12]. Since the goal is to
be able to recover all the input symbols, Raptor codes first apply
a classical erasure code to the input symbols, followed by the
LT code. A Raptor code is of the form (k,C,Ω(x)), where C is
the first layer code and Ω(x) is the output symbol distribution.
The encoding goes as follows:

1. Using the code C, encode the message (m) of length k
symbols into a codeword (c) of n symbols.

2. Apply the LT code algorithm to the codeword c resulting
in another codeword c′ which is slightly larger than c. The
LT algorithm should use the specified output distribution
Ω(x).

The choice of the code C effects the encoding and decod-
ing costs, and also the decoding algorithm. Choices for C in-
clude Tornado codes, LDPC codes, extended Hamming codes,
etc [13]. In our paper we use a regular Gallager LDPC code for
C.

D. System Model

Each path i out of the N paths acts as an erasure channel with
erasure probability 1−pi. An erasure channel with erasure prob-
ability p is one in which each symbol is erased with probability
p [14]. In our model we assume that the destination node either
receives all the symbols down a particular path or receives noth-
ing. This assumption is feasible since data cannot be trusted if
it has been tampered with by an adversary.

A codeword of length n is dispersed among the N paths,
with path i receiving fi symbols forming a vector f =

[f1, f2, . . . , fN]. This means that
∑N

i=1 fi = n. We can form a
vector s of length N composed of ‘1’s and ‘0’s with a ‘1’ in spot
i representing a non-erasure on path i and a ‘0’ representing an
erasure. If we use an MDS code, then with complete certainty
the message can be decoded if k out of n symbols are received.
Thus, if we construct a matrix S composed of all possible com-
binations of ‘0’s and ‘1’s our probability of successful decoding
for a specified f becomes:

Psuccess(f) =
∑

s∈S

N∏

i=1

psii (1− pi)
1−siu(s · f − k) (1)

KACEWICZ AND WICKER: REDUNDANCY MINIMIZING TECHNIQUES FOR ROBUST... 567

where u(·) represents the unit step function. The matrix S is
filled with all possible vectors s implying that there are 2N rows.
Hence if we run through all the rows in S to calculate Psuccess,
this results in an exponential running time with relation to the
number of paths. If the number of paths is not too large and one
wishes for extreme precision, this calculation is not too arduous.
Otherwise, it is necessary to find a close alternative which we
will discuss next.

Each path has a Bernoulli distribution since it receives the ex-
ported symbols (1) with probability pi or an erasure (0) with
probability 1 − pi. This implies that the sum of multiple trans-
missions across path i has a Binomial distribution. For large
sample sizes, the Binomial distribution can be approximated us-
ing the Gaussian distribution, and the authors in [5] suggest this
approximation to calculate the probability of success.

We consider a random variable that represents the average
number of successful transmission attempts out of fi on path
i. Using the observation mentioned above, this random vari-
able is distributed binomially. We approximate this random vari-
able using a Gaussian distribution and it is known that the
distribution of the sum of independent Gaussian random vari-
ables is also Gaussian. This indicates that the distribution of
the sum of the paths is also Gaussian. Hence, the approxima-
tion on each path is Gaussian distribution ∼ N (fipi, f

2
i pi(1−

pi), and the distribution of the sum of the paths becomes

∼ N
(∑N

i=1 fipi,
∑N

i=1 f
2
i pi(1− pi)

)
. Then, integrating this

distribution over the scenario that k or more symbols are re-
ceived in total yields a probability of success function:

Psuccess(f) ≈ 1

2
+

1

2
erf

⎛

⎝

∑N
i=1 fipi − k + 1

2√
2
∑N

i=1 f
2
i pi(1− pi)

⎞

⎠ (2)

where erf(x) = 2
π

∫ x

0
e−y2

dy. It can be seen that computation
of this success probability approximation is significantly simpler
than that of the true success probability.

The source node wants to assure that his message is received
intact with probability p∗ at the destination. The success proba-
bility functions along with the security level of each path can be
used to determine message redundancy and symbol allocation.
The original data is k symbols long, and if an MDS code is used
to extend the k to n symbols, there are a few observations we
can make. As mentioned earlier, any of the k of the n symbols
can decode the original message. Let γ = n/k represent the
redundancy ratio. Below are some initial observations:

• p1 ≥ p2 ≥ · · · ≥ pN implies that f1 ≥ f2 ≥ · · · ≥ fN .
• If γ≥N then an optimal approach is to send f1, f2, · · ·, fN ≥

k.
• It is not optimal to send more than k symbols down any

path.
• If p1 ≥ p∗, then k symbols should be sent down path 1. In

this case γ = 1.

These observations have led to developing two optimal redun-
dancy and symbol allocation algorithms described in [2], and
presented in the next section.

Fig. 1. Minimum redundancy for N = 3 when p1 ≥ p1p2+p2p3+p1p3−
2p1p2p3.

Fig. 2. Minimum redundancy for N = 3 when p1 < p1p2+p2p3+p1p3−
2p1p2p3.

III. OPTIMAL SYMBOL ALLOCATION AND
MINIMUM REDUNDANCY FOR N = 3

To simplify our analysis, in [2], we began with the situa-
tion with N = 3 paths between the source and destination. A
brute force method can be used to find optimal symbol alloca-
tion and minimum redundancy. Assume that the desired success
probability is p∗ and that paths 1, 2, 3 have erasure probabilities
1 − p1, 1 − p2, 1 − p3. The optimal symbol allocation vector f
and redundancy ratio γ are as follows:

• If p1 + p2 − p1p2 < p∗ ≤ p1 + p2 + p3 − p1p2 − p2p3 −
p1p3 + p1p2p3,
⇒ γmin = 3 and f1, f2, f3 = k.

• If max{p1p2 + p2p3 + p1p3 − 2p1p2p3, p1} < p∗ ≤ p1 +
p2 − p1p2,
⇒ γmin = 2 and f1, f2 = k, f3 = 0.

• If p1 < p1p2 + p2p3 + p1p3 − 2p1p2p3 and p1 < p∗ ≤
p1p2 + p2p3 + p1p3 − 2p1p2p3,
⇒ γmin = 3

2 and f1, f2, f3 = k
2 .

• If 0 < p∗ ≤ p1,
⇒ γmin = 1 and f1 = k, f2, f3 = 0.

Fig. 1 shows a plot of minimum redundancy versus the target
success probability for p1 ≥ p1p2 + p2p3 + p1p3 − 2p1p2p3.
Fig. 2 shows the case where p1 < p1p2+p2p3+p1p3−2p1p2p3.
Results in Figs. 1 and 2 represent all possible combinations for
the symbols across the paths. Ordering the paths simplifies
the analysis so assume that p1 ≥ p2 ≥ · · · ≥ pN . We know
that the redundancy γ is such that 1 ≤ γ ≤ 3. Considering

568 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 11, NO. 6, DECEMBER 2009

γ = 1 then there are three different possible symbol allocations:
f = [k, 0, 0], f = [k2 ,

k
2 , 0], and f = [k3 ,

k
3 ,

k
3]. It is known that a

success occurs if the sum of the received symbols across all the
paths is greater than or equal to k and since p1 ≥ p2 ≥ p3, this
implies that we only need to look at three situations: 1) When
only the first path is needed for success, 2) when the first and
second path are needed for success, and 3) when all three paths
are needed for success. The reason for having only three sym-
bol allocations is based on the following observation. Consider
the case when only two paths are required and assume that k/2
symbols are sent down each path, then it can be seen that proba-
bility of success is exactly the same as when (i−1)k/i symbols
were sent down the first path and k/i symbols sent down the
second path. Note that p1, p1p2, and p1p2p3 are probabilities
of success for scenarios 1, 2, and 3, respectively. So clearly in
this scenario, f = k, 0, 0 yields the highest success probability.
Continuing in this manner for different possible values of γ we
obtain the results shown above. Unfortunately, there are not al-
ways going to be N = 3 paths, so next we devise a method to
take care of the instance where there are an arbitrary amount of
paths.

IV. ALGORITHMS FOR ARBITRARY NUMBER OF
PATHS

Following [2], the results can be extended to an arbitrary num-
ber of paths. Since the APS set size varies with path security, it
is important to design an algorithm that dynamically determines
all parameters. A closed form expression for the network’s prob-
ability of success is difficult to obtain, thus, we developed
heuristic algorithms which determine parameters. One of these
algorithms has exponential running time and is called minimum
redundancy algorithm in exponential time or MRAET. Though
MRAET has an exponential running time, we prove that in sev-
eral special cases it’s optimal. In cases when exponential run-
ning time is unacceptable, we introduce an algorithm with poly-
nomial running time. We call it minimum redundancy algorithm
in polynomial time (MRAPT).

Both MRAET and MRAPT algorithms consist of two steps.
Part 1 is to reduce dimensionality of the space due to the fact that
the search redundancy/symbol dispersion space is extremely
large. This reduction results in a shorter search time required to
determine the desired parameters. Given p∗, part 1 first assigns
the symbol allocation vector f = [k, 0, · · ·, 0]. f is then plugged
into probability expression (1) and (2) in MRAET and MRAPT,
respectively) and compared with p∗. If the value is greater than
or equal to p∗ the algorithm moves on to part 2. Otherwise it
sets f = [k, k, 0, · · ·, 0] and repeats the procedure. Part 1 is ex-
ited when f is found that generates a probability greater than or
equal to p∗. Part 2 picks off where part 1 left off, and it checks
possible symbol allocations which have a smaller redundancy
than that found in part 1 and also result in a success probabil-
ity greater than p∗. The algorithm terminates when there are
no options left. Taking the value j = γmin from the first part
of the algorithm, the second part of the algorithm starts with
the case were the first j − 2 paths have k symbols assigned to
them. The algorithm then steps through different combinations
for the rest of the N − (j − 2) paths to see if there is a combi-

Minimum Redundancy Algorithm in Exponential Time
Part 1:

Step 1: Assign j = 1 and go to step 2.

Step 2: Let A = S((2N−j+1:2N),(1:N)) and go to step 3.

Step 3: Calculate PA
success

If PA
success ≥ p∗

f1, . . . , fj = k, fj+1, . . . , fN = 0

γmin = j, Ptemp = PA
success

Go to Part 2 of the algorithm

else let j = j + 1

if j > N move on to Part 2

else return to Step 2

If j < 2 then we have an optimal allocation and we are
done. Otherwise:

Part 2:
Let i = 2 and j = γmin

Step 1: Let i = i+ 1
if i > N or j − 2 + i > N then terminate Part 2
else go to Step 2
Step 2: Let s = 2 and go to step 3
Step 3:
if j − 2 + i

s
≤ j

Let A denote the subset of matrix S composed of rows whose indices
are in Zj

(i,s)
(where Zj

(i,s)
is the set defined above) followed with rows

(2N−(j−2) + 1 : 2N) of the matrix S, or

A =

[
S(

(Z
j
(i,s)

),(1:N)
)

S((2N−(j−2)+1:2N),(1:N))

]

Go to step 4
else Go to step 6
Step 4: Calculate PA

success
if (PA

success ≥ p∗ with j − 2 + i
s

< j) or (j − 2 + i
s

= j and
Ptemp < PA

success)
Go to step 5
else Go to step 6
Step 5: Let Ptemp = PA

success , γmin = j − 2 + i
s

, and
f1, . . . , fj−2 = k

fj−1, . . . fj−2+i =
k
s

fj−1+i, . . . , fN = 0
Go to step 6
Step 6: Let s = s+ 1
if s > i Go to step 1
else Go to step 3

This algorithm is optimal for several of cases. One case
is when we have N = 3 paths.

nation which results in a lower redundancy and also meets the
target success probability requirement. An example of a com-
bination which part two of the algorithm will attempt would be
f1, f2, · · ·, fj−2 = k, fj−1, fj , fj+1 = k

2 , fj+2, · · ·, fN = 0.
Some new notation will be mentioned before introducing both
parts of the algorithm

PA
success =

∑

s∈A

N∏

i=1

psii (1− pi)
1−si

KACEWICZ AND WICKER: REDUNDANCY MINIMIZING TECHNIQUES FOR ROBUST... 569

where A is some submatrix of S (S is a matrix filled with all
possible length N binary vectors, with the first row being the all
zero vector and the last row being the all one vector).

∑
s∈A

represents a sum which begins with the first row vector of A and
terminates with the vector that is the last row of A. Let

Zj
(i,s) = {z ∈ {1, · · · , 2N−(j−2)} |

j−2+i∑

l=j−1

Sz,l ≥ s}

for some integers s, i, j. Where Sz,l represents the element of S
in the zth row and lth column. Let S((i:j),(1:l)) (i ≥ j and l ≥
1) represent a submatrix of S composed of all the rows i, i +
1, · · · , j of S up to the column l.

Theorem 2: MRAET is optimal when N = 3.
Proof: After Part 1 of the algorithm, we have 3 options for

j, j = 1, 2, 3.
If j = 1, then the algorithm terminates after part 1 since j < 2.
We are left with γmin = 1 ⇒ n = k.

Thus, f1 = k, f2 = f3 = 0 which is optimal.
If j = 2, then

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

and Ptemp = p1 + p2 − p1p2.
The algorithm then steps into part 2. It starts and ends with
the scenario i = 3, s = 2 since N = 3. It first checks is
j − 2 + i

s ≤ γmin = j. If so, then it searches through

S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

rows (1, · · · , 2N−(j−2)) = (1, · · · , 8) such that the columns
(j−1, · · · , j−2+ i) = (1, · · · , 3) sum to greater than or equal
to s = 2. Then,

A =

⎡

⎢
⎢
⎣

0 1 1
1 0 1
1 1 0
1 1 1

⎤

⎥
⎥
⎦.

Then since j − 2 + i
s = 3

2 < j = 2, MRAET checks if Psuccess =∑
s∈A

∏3
l=1 p

si
i (1− pi)

1−si = p1p2 + p2p1 + p1p3 − 2p1p2p3 ≥ p∗. If
so, then γmin = 3

2 and f1, f2, f3 = k
s = k

2 , otherwise γmin = 2
and f1 = f2 = k, f3 = 0.

Lastly, if j = 3 the algorithm stops before part 2 because
j − 2 + 3 > 3. Thus, f1 = f2 = f3 = k, which is the same
allocation as we had above. �

Next, we prove a theorem to help us show another optimal
case.

Theorem 3: Suppose we have k symbols allocated to paths
1, · · · , i− 1 and 0 symbols allocated to the remaining of the N
paths, resulting with probability of success p̂i−1. Then, if we let
path i have k symbols, the probability of success is

p̂i = p̂i−1 + pi − p̂i−1pi (3)
Proof: By induction on the integer i.

Base Case: i = 2
We have p̂i−1 = p̂1 = p1, since we only have success if path
1 succeeds. If we let path 2 have k symbols, then we have a
success solely if path 1 succeeds, if path 2 is the only successful
one, or if they both succeed. This is equivalent to:

p̂2 = p̂1p2 + p̂1(1− p2) + (1− p̂1)p2 = p̂1 + p2 − p̂1p2.

Inductive Hypothesis: Suppose (3) holds ∀i ≤ m− 1.

Inductive Step: Let i = m . Then by inductive hypothesis we
know that p̂m−1 is the probability of success for the first m− 1
paths having k symbols and the rest having 0. We can think of
p̂m−1 as being the probability of success for one super path.
Thus, if we let the mth path have k symbols, then we have suc-
cess if only the super path is successful, the mth path is the only
successful one, or if they are both successful. That is:

p̂m = p̂m−1pm + p̂m−1(1− pm) + (1− p̂m−1)pm

= p̂m−1 + pm − p̂m−1pm.

Hence the result holds ∀i ∈ 2, . . . N . �

Theorem 4: MRAET is optimal when j = N .
Proof: If j = N , then we know that A is equal to S,

excluding the all zero first row, PA
success ≥ p∗.

By Thm. 3 we know that the probability of success for the first
N − 2 paths having k symbols and the rest having 0 is:

p̂N−2 = p̂N−3 + pN−2 − p̂N−3pN−2 < p∗.

Thus, if we treat the first N − 2 paths as one super path
with probability psuper = p̂N−2, then the current problem can
be mapped to the case where N = j = 3 since super path is
path 1, N − 1 is path 2, and N is our third path. �

Corollary 1: MRAET is optimal when j = N − 1
This results follows from the theorem above, since j = N − 1
can be mapped to the case where N = 3 and j = 2.

For MRAPT we proceed similarly to MRAET but we use the
success probability approximation, (2). This means that there
is no need to search through the matrix S and further spending
exponential running time by calculating the true probability of
error. Hence, Part 2 for the MRAPT algorithm excludes the
S matrix search, and when it terminates a vector f is returned.
Next we will analyze the running time of these algorithms.

A. Running Time Analysis

We begin by analyzing the MRAET algorithm. We assume
that S is computer offline. The matrix S has 2N rows and the
worst case scenario is if we have to search through the entire

570 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 11, NO. 6, DECEMBER 2009

matrix. Using a common logarithmic search algorithm like the
binary search mentioned in [15], the running time of this process
becomes O(log2(2

N)) = O(N). The worse case running time
(A = S) calculating the probability of success is O(2N). Thus,
inside the loop running time becomes O(N + 2N). It can be
seen that the outer loop takes < N iterations, hence the total
worst case running time of part 1 is O(N(N + 2N)). Part 2 has
one more outside loop of N iterations but the analysis is pretty
much identical. This implies that MRAET’s total worst scenario
running time is O(N2(N + 2N)). Without a doubt MRAET is
an exponential time algorithm.

The running time of MRAPT is significantly reduced since it
is not necessary to traverse matrix S or to calculate the true suc-
cess probability. Using (2) as the probability of success func-
tion, it is necessary to calculate the mean and variance of the

Gaussian distribution ∼ N
(∑N

i=1 fipi,
∑N

i=1 f
2
i pi(1− pi)

)
.

Assuming that the values pi(1 − pi) are saved, the mean and
variance calculations each take O(2N) iterations which is the
worst case running time. Similar to the analysis for MRAET,
the second part overbears the running time with its two loops
resulting in O(N2(4N)) = O(N3) running time for MRAPT.
MRAPT thus runs in polynomial time with respect to the num-
ber of paths.

V. APPLICATION TO DIFFERENT CODES

Although these algorithms were developed for MDS codes,
we can also apply them to LT and Raptor codes. These codes
are almost MDS codes implying that instead of needing to re-
ceive exactly k symbols to decode the message, around k(1+ε)
are needed for decoding. Although this increase in overhead is
not desirable, these codes have several advantages over the clas-
sic MDS codes. As mentioned above, both LT and Raptor codes
have smaller encoding/decoding time than MDS codes. There
are many instances where the network efficiency is less impor-
tant than the cost of the encoder/decoder. Another advantage of
these codes is that they are fountain codes, meaning that they
are rateless. This is extremely important because in the situa-
tion where the decoder does not receive enough output symbols
to decipher the transmitted message, the encoder can very sim-
ply send some more data independently of the output symbols
which were received. An RS code, for example, would either
require knowledge of the exact locations of missing symbols or
would have to re-encode and retransmit the original message.

A. LT Code Implementation

Theoretically in an LT code, with probability of 1 − δ, all k
input symbols can be recovered from a set of k(1 + ε), where
overhead ε depends on δ. To implement LT codes, we first de-
cide on the value of δ which is used to determine the parameter
R = c log(k/δ)

√
k. The next step is to establish the overhead

ε. We use the Robust Solition distribution mentioned in an ear-
lier section for the output symbol degree distribution. In [8], the
authors show that using this distribution and to ensure a prob-
ability 1 − δ of successful decoding, the total output symbol
size should be on the order of K = k + O(

√
(k) ln2(k/δ)).

In particular, K = k +
∑k/R−1

i=1
R
i + R ln(R/δ) implying that

ε = 1
k

(∑k/R−1
i=1

R
i +R ln(R/δ)

)
. Our algorithm is used to

determine total redundancy needed to ensure that the probabil-
ity of success is above a certain threshold. This means that our
algorithm passes 1 − δ and p∗ as parameters and determines
the symbol allocation/redundancy so that the calculated success
probability is at least as large as p∗.

B. Raptor Code Implementation

We implement a raptor code using a regular LDPC code com-
bined with an LT code. The first step is to determine the over-
head of both codes. Based on the fraction of input symbols,
δ, which we would like to decode using the inner LT code, we
determine εLT which specifies the LT redundancy. Then, fol-
lowing the method used in [16], we let εraptor = 2εLT. Since
(1 + εraptor) = (1 + εLDPC)(1 + εLT), εLDPC becomes

εLDPC =
εraptor

2 + εraptor
.

Next, using the raptor overhead, or k(1 + εraptor), the total
redundancy and symbol allocation are determined using either
MRAET or MRAPT. Once the redundancy and the symbol allo-
cation is specified, it is necessary to determine the amount of re-
dundant check nodes of each code. Since the previous overheads
represented the k out of n symbols similar to MDS codes, these
redundancies no longer match the total code size. So the initial
overhead used to determine the total amount of check nodes and
symbol allocation was:

k′ = k(1 + εLDPC)(1 + εLT). (4)

In order to determine the new redundancies, we keep in mind
that we would like the ratio of the original redundant nodes of
each code to be the same. We introduce two new constants which
we would like to solve for: γLT and γLDPC. These constants
represent the increase in the overhead for the LDPC and LT code
to reach the size of the final codeword n. We have,

n = k(1 + γLTεLT)(1 + γLDPCεLDPC). (5)

Initially there are riLDPC = kεLDPC and riLT = k(εLT+εLTεLDPC)
redundant nodes for the LDPC and LT code respectively. Af-
ter finding the total codeword size n from the algorithm, the
LDPC code has rLDPC = kγLDPCεLDPC redundant symbols and
the LT code has rLT = k(γLDPCεLT + γLTγLDPCεLTεLDPC) redun-
dant symbols. We solve for γLT, γLDPC by setting the ratio of the
final redundant symbols equal to that of the initial ones, or:

rLT

rLDPC
=

riLT

riLDPC
=

γLDPCεLT + γLTγLDPCεLTεLDPC

γLDPCεLDPC

=
εLT + εLTεLDPC

εLDPC
. (6)

Using (5) we obtain:

γLT =

n
k(1+γLDPCεLT)

− 1

εLT
. (7)

From (6) and (7), we acquire:

γLDPC =
n
k − 1

(εLDPC + εLT + εLDPCεLT)
. (8)

KACEWICZ AND WICKER: REDUNDANCY MINIMIZING TECHNIQUES FOR ROBUST... 571

Hence the LDPC code has kγLDPCεLDPC redundant nodes. We
use a regular Gallagher code, meaning that the n− k× n parity
check matrix has three ‘1’s per column. The belief propagation
algorithm is used for decoding.

To determine the degree distribution of the LT code, we use
an idea discussed in [12] and [17]. In [12], the authors discuss
the design of the LT degree distribution for finite length raptor
codes. Based on keeping the expected ripple size of the LT code
at c

√
k(1− x), they determine that the LT degree distribution

should meet this inequality:

Ω′(x) ≥
− ln

(
1− c

√
1−x
k

)

1 + εraptor
(9)

with x ∈ [0, 1−δ] and δ > c/
√

(k). The degree distribution can
be solved as in [12], by discretizing x in the interval [0, 1 − δ]
and forming a linear program that must meet the constraints in
9. In particular, the linear program is a minimization problem
where the expected degree, Ω′(1), is minimized, or:

minimize Ω′(1)

subject to Ω′(x) ≥
− ln

(
1− c

√
1−x
k

)

1 + εraptor

D∑

i=1

Ωi = 1 (10)

x ∈ [0, 1− δ]

where D represents the maximum degree. Using the overhead
determined above for the LT code, we use this degree distribu-
tion in the final step of the encoding process to add redundancy
to the LDPC code and forming the final codeword.

VI. SIMULATIONS AND COMPARISONS

All of our simulations are run over numerous Monte Carlo
runs to accurately depict performance. We measure the per-
formance of our algorithms by first comparing the suc-
cess probability of MRAET and MRAPT in Fig. 3. Fig. 3
also shows the desired probability level as well as the suc-
cess probability approximation to allow for a full compari-
son. The parameters we use for this plot are N=7, k=4,
p = [0.8000, 0.5901, 0.5338, 0.5261, 0.5203, 0.5107, 0.5000]T .
MRAET algorithm performs very well and achieves a success
probability that is higher or equal to p∗. MRAPT on the other
hand seems to oscillate around p∗, but typically stays above p∗.
This makes MRAPT particularly practical since it determines
symbol allocation and redundancy in polynomial time. Compar-
ing MRAPT to the approximation we used for the probability of
success, it can be seen that this approximation seems to be off
by a constant offset from the true performance.

Using the same parameters as used for 3, Fig. 4 shows a com-
parison of the redundancy ratios of MRAET and MRAPT vs.
p∗. Due to the sub-optimality of MRAPT, the redundancy ra-
tio of MRAPT is slightly higher than that of MRAET. The gap
between the redundancy ratios is fairly small until p∗ gets to be
around 0.98 and there appears to be a large jump for the redun-
dancy of MRAPT.

Fig. 3. Probability of success of MRAPT and MRAET.

Fig. 4. Redundancy ratio for MRAPT and MRAET.

Figs. 5, 6, and 7 show the performance of MDS, LT, and Rap-
tor codes using the MRAET algorithm for k=50. In the remain-
ing figures we change the number of input symbols to k=50, and
we evaluate the performance of MDS, LT, and Raptor codes us-
ing the MRAET algorithm. Fig. 5 shows the actual probability
of successful decoding for MDS, LT, and Raptor codes as com-
pared to the target probability of success. All of these codes
have a successful decoding probability that is equal to or above
p∗, making them excellent candidates for multipath channels.
On average, the MDS code seems to have lower success proba-
bility than the other codes, though in Fig. 6 it can be seen that
the MDS codes do have the minimum redundancy. The Raptor
code has higher decoding success probability than the LT code
for lower values of p∗ but as p∗ grows the LT code outperforms
the Raptor code. Though in Fig. 6 LT code has significantly
bigger codeword size than both Raptor and MDS codes.

The Raptor code seems to have a constant amount of extra
output symbols than the MDS code. The code has more redun-
dancy added but it outperforms the MDS code significantly as
shown in Fig. 7. Fig. 7 depicts the average bit error probability
for these three codes. The Raptor code has consistently lower bit
error rate than both the other codes, and the LT code has lower
bit error rate than the MDS code. The bit error rate for the Rap-
tor code is extremely low and the LT error rate is higher by a
relatively minute amount.

572 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 11, NO. 6, DECEMBER 2009

Fig. 5. Probability of success over different codes using MRAET.

Fig. 6. Total codeword size for different codes using MRAET.

Fig. 7. Bit error rate over different codes using MRAET.

VII. CONCLUSION

We consider a network setup with a source and destination
node and N independent paths separating them. These paths are
erasure paths and they have a pre-determined “trustworthiness”
level. We determined the minimum code length and message
dispersal down the paths as to achieve a target success prob-
ability. Due to the inability to express the true success prob-
ability in closed form, we introduced two heuristic algorithms
to determine the mentioned parameters. MRAET uses the ac-
tual success probability and results in an exponential running
time. MRAPT on the other hand uses an approximation of the
probability of success, which causes sub-optimal performance,

though runs in efficient polynomial time. Both these algorithms
are developed for the specific class of codes called MDS codes.

We apply MRAET to three codes, MDS, LT, and Raptor
codes. The simulations showed that the Raptor code appears
to be the best candidate for our algorithm in a multipath chan-
nel. It has a high success probability, along with very low bit
error rate, and the code does not have a huge amount of redun-
dancy difference over the MDS code. If one wishes to have
higher network efficiency MDS codes would be the ideal choice
since the redundancy is lower than the other codes. The problem
with MDS codes is that the higher encoding/decoding time re-
sult in more complex and expensive encoders/decoders. Also, if
an MDS code is used, and the necessary output symbols are not
received then it is much more difficult to retransmit the missing
information. Raptor and LT codes are rateless meaning it is very
simple to re-encode and transmit missing output symbols. An-
other advantage of these codes is the fact that they have cheap
encoding/decoding costs and result in low bit-error rate.

REFERENCES

[1] P. Papadimitratos and Z.J. Haas, “Secure message transmission in mobile
ad hoc networks,” Ad Hoc Netw., pp.193–209, 2003.

[2] A. Kacewicz and S.B. Wicker, “Optimizing redundancy using MDS codes
and dynamic symbol allocation in mobile ad hoc networks,” in Proc. Con-
ference on Information Sciences and Systems, Princeton University, Mar.
2008.

[3] S. J. Lee and M. Gerla, “Split multipath routing with maximally disjoint
paths in ad hoc networks,” in Proc. IEEE ICC, 2001, pp. 3201–3205.

[4] A. Tsirigos and Z. J. Haas, “Analysis of multipath routing, part 1: The
dffect on the packet delivery ratio,” IEEE Trans. Wireless Commun., vol.
3, no. 1, Jan. 2004.

[5] A. Tsirigos and Z. J. Haas, “Analysis of multipath routing, part 2: Mit-
igation of the effects of frequently changing network topologies,” IEEE
Trans. Wireless Commun., vol. 3, no. 2, Mar. 2004.

[6] M. O. Rabin, “Efficient dispersal of information for security, load balanc-
ing, and fault tolerance,” J. ACM, pp. 335–348, 1989.

[7] S. B. Wicker and V. K. Bhargava, Reed Solomon Codes and Their Appli-
cations, Piscataway: IEEE Press, 1994.

[8] M. Luby, “LT-codes,” in Proc. 43rd Annu. IEEE Symp. Foundations of
Computer Science, Vancouver, BC, Canada, Nov. 2002, pp. 271–280.

[9] S. B. Wicker. Error Control Systems for Digital Communication and Stor-
age. Upper Saddle River, NJ: Prentice Hall, 1995.

[10] David J.C. MacKay, Information Theory, Inference, and Learning Algo-
rithms, Cambridge University Press, 2003.

[11] R. Karp, M. Luby, and A. Shokrollahi, “Finite length analysis of LT
codes,” in Proc. IEEE ISIT, Chicago, June 2004.

[12] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2551–2567, June 2006.

[13] E. Maneva and A. Shokrollahi, “New model for rigorous analysis of LT
codes,” in Proc. IEEE ISIT, Seattle, WA, July 2006.

[14] Thomas M. Cover and Joy A. Thomas, Elements of Information Theory,
John-Wiley and Sons, Inc. 2nd ed., 2006.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and L. Stein, Introduction to
Algorithms. 2nd ed., MIT Press, 2001.

[16] P. Cataldi, M. P. Shatarski, M. Grangetto, and E. Magli, “Implementa-
tion and performance evaluation of LT and Raptor codes for multimedia
applications,” Intelligent Information Hiding and Multimedia Signal Pro-
cessing, 2006.

[17] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, “Efficient
erasure correcting codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.569–
584, Feb. 2001.

KACEWICZ AND WICKER: REDUNDANCY MINIMIZING TECHNIQUES FOR ROBUST... 573

Anna Kacewicz is currently working on her Ph.D. in
Electrical and Computer Engineering at Cornell Uni-
versity. She received her B.S. in Electrical and Com-
puter Engineering from University of Texas at Austin
and her M.S. degree from Cornell University. Her re-
search interests include coding and information the-
ory, information security and reliability, and wireless
network security.

Stephen B. Wicker is a Professor of Electrical and
Computer Engineering at Cornell University, and a
member of the graduate fields of Computer Science
and Applied Mathematics. He was awarded the 1988
Cornell College of Engineering Michael Tien Teach-
ing Award, the 2000 Cornell School of Electrical
and Computer Engineering Teaching Award, and the
2009 Cornell College of Engineering Douglas Whit-
ney Teaching Award. As of 2009, he has supervised
thirty-five doctoral dissertations. He is the author
of Codes, Graphs, and Iterative Decoding (Kluwer,

2002), Turbo Coding (Kluwer, 1999), Error Control Systems for Digital Com-
munication and Storage (Prentice Hall, 1995), and Reed-Solomon Codes and
Their Applications (IEEE Press, 1994). He has served as Associate Editor for
Coding Theory and Techniques for the IEEE Transactions on Communications,
and is currently Associate Editor for the ACM Transactions on Sensor Networks.
He has served two terms as a member of the Board of Governors of the IEEE
Information Theory Society, and chaired the Technical Program Committee for
the Fifth International Conference on Information Processing in Sensor Net-
works (IPSN 2006). He teaches and conducts research in wireless information
networks and sensing systems. His research has focused on the development
and application of advanced technologies for adaptive networks. He is also con-
ducting joint research with the Berkeley School of Law on privacy policy and
the impact of the deployment of sensor networks in public spaces. Current in-
terests include the application of artificial intelligence and game theory to self-
configuring wireless sensor networks. Such networks are being developed for
disaster recovery, infrastructure monitoring, and national security. Other inter-
ests include network security, the behavior of complex systems, and the evolu-
tion of the nation’s telecommunications networks. He is the Cornell Principal
Investigator for the TRUST Science and Technology Center a National Science
Foundation center dedicated to the development of technologies for securing the
national critical infrastructure.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /ahn2006-B
 /ahn2006-L
 /ahn2006-M
 /Albertus-ExtraBold
 /Albertus-Medium
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Algerian
 /AmiR-HM
 /AntiqueOlive
 /AntiqueOlive-Bold
 /AntiqueOlive-Compact
 /AntiqueOlive-Italic
 /AntiqueOlive-Roman
 /Apple-Chancery
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Candid
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGOmega
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGTimes
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /Chicago
 /Chiller-Regular
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Condensed-Bold
 /Clarendon-Light
 /Cmex10
 /Cmmi10
 /Cmr10
 /Cmsy10
 /ColonnaMT
 /CombiNumerals
 /CombiNumerals-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CooperBlack-Italic
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /Coronet
 /Coronet-Regular
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CurlzMT
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldExtendedTwo
 /Eurostile-ExtendedTwo
 /ExpoM-HM
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FZSY--SURROGATE-0
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Gautami
 /Geneva
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldCondensed
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /Goudy-ExtraBold
 /Goudy-Italic
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /H2gprM
 /H2gsrB
 /H2gtrE
 /H2gtrM
 /H2hdrM
 /H2mjrE
 /H2mjsM
 /H2mkpB
 /H2porL
 /H2porM
 /H2sa1M
 /HaansoftBatang
 /HaansoftDotum
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HeadlineR-HM
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HoeflerText-Black
 /HoeflerText-BlackItalic
 /HoeflerText-Italic
 /HoeflerText-Ornaments
 /HoeflerText-Regular
 /HYbdaL
 /HYbdaM
 /HYbsrB
 /HYcysM
 /HYdnkB
 /HYdnkM
 /HYgprM
 /HYgsrB
 /HYgtrE
 /HYhaeseo
 /HyhwpEQ
 /HYkanB
 /HYkanM
 /HYmjrE
 /HYmprL
 /HYnamB
 /HYnamL
 /HYnamM
 /HYporM
 /HYsanB
 /HYsnrL
 /HYsupB
 /HYsupM
 /HYtbrB
 /HYwulB
 /HYwulM
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /JoannaMT
 /JoannaMT-Bold
 /JoannaMT-BoldItalic
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldSlanted
 /LetterGothic-Italic
 /LetterGothic-Slanted
 /LubalinGraph-Book
 /LubalinGraph-BookOblique
 /LubalinGraph-Demi
 /LubalinGraph-DemiOblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /MagicR-HM
 /Magneto-Bold
 /MaiandraGD-Regular
 /MalgunGothicBold
 /MalgunGothicRegular
 /Mangal-Regular
 /Marigold
 /Math1
 /Math1-Bold
 /Math1Mono
 /Math1Mono-Bold
 /Math2
 /Math2-Bold
 /Math2Mono
 /Math2Mono-Bold
 /Math3
 /Math3Bold
 /Math3Mono
 /Math3Mono-Bold
 /Math4
 /Math4-Bold
 /Math4Mono
 /Math4Mono-Bold
 /Math5
 /Math5Bold
 /Math5Mono
 /Math5MonoBold
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MingLiU
 /Mistral
 /Modern-Regular
 /MoeumTR-HM
 /Monaco
 /MonaLisa-Recut
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MVBoli
 /NanumGothicCoding
 /NanumGothicCoding-Bold
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewGulim
 /NewYork
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /Optima
 /Optima-Bold
 /Optima-BoldItalic
 /Optima-Italic
 /Oxford
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /PyunjiR-HM
 /Raavi
 /RageItalic
 /Ravie
 /ReboBold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-Italic
 /StempelGaramond-Roman
 /Stencil
 /Sylfaen
 /Symath
 /Symbol
 /SymbolMT
 /Taffy
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers
 /Univers-Bold
 /Univers-BoldExt
 /Univers-BoldExtObl
 /Univers-BoldItalic
 /Univers-BoldOblique
 /Univers-Condensed
 /Univers-CondensedBold
 /Univers-Condensed-Bold
 /Univers-Condensed-BoldItalic
 /Univers-CondensedBoldOblique
 /Univers-Condensed-Medium
 /Univers-Condensed-MediumItalic
 /Univers-CondensedOblique
 /Univers-Extended
 /Univers-ExtendedObl
 /Univers-Light
 /Univers-LightOblique
 /Univers-Medium
 /Univers-MediumItalic
 /Univers-Oblique
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /YetR-HM
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

