Micro and macro in the dynamics of dilute polymer solutions: Convergence of theory with experiment

  • Prakash, J. Ravi (Department of Chemical Engineering, Monash University)
  • Published : 2009.12.31

Abstract

Recent developments in dilute polymer solution rheology are reviewed, and placed within the context of the general goals of predicting the complex flow of complex fluids. In particular, the interplay between the use of polymer kinetic theory and continuum mechanics to advance the microscopic and the macroscopic description, respectively, of dilute polymer solution rheology is delineated. The insight that can be gained into the origins of the high Weissenberg number problem through an analysis of the configurational changes undergone by a single molecule at various locations in the flow domain is discussed in the context of flow around a cylinder confined between flat plates. The significant role played by hydrodynamic interactions as the source of much of the richness of the observed rheological behaviour of dilute polymer solutions is highlighted, and the methods by which this phenomenon can be incorporated into a macroscopic description through the use of closure approximations and multi scale simulations is discussed.

Keywords

References

  1. Bajaj, M., P. P. Bhat, J. R. Prakash and M. Pasquali, 2006, 'Multiscale simulation of viscoelastic free surface flows,' J. Non-Newtonian Fluid Mech. 140, 87-107 https://doi.org/10.1016/j.jnnfm.2006.04.009
  2. Bajaj, M., M. Pasquali and J. R. Prakash, 2008, 'Coil-stretch transition and the breakdown of computations for viscoelastic fluid flow around a confined cylinder,' J. Rheol. 52, 197-223 https://doi.org/10.1122/1.2807444
  3. Becherer, P., A. N. Morozov and W. van Saarloos, 2008, 'Scaling of singular structures in extensional flow of dilute polymer solutions,' J. Non-Newtonian Fluid Mech. 153, 183-190 https://doi.org/10.1016/j.jnnfm.2007.12.009
  4. Becherer, P., W. van Saarloos and A. N. Morozov, 2009, 'Stress singularities and the formation of birefringent strands in stagnation flows of dilute polymer solutions,' J. Non-Newtonian Fluid Mech. 157, 126-l32 https://doi.org/10.1016/j.jnnfm.2008.09.001
  5. Beck, V. A. and E. S. G. Shaqfeh, 2006, 'Ergodocity breaking and conformational hysteresis in the dynamics of a polymer thethered at a surface stagnation point,' J. Chem. Phys. 124, 094902 https://doi.org/10.1063/1.2171963
  6. Bhave, A. V., R. C. Armstrong and R. A. Brown, 1991, 'Kinetic theory and rheoLogy of dilute, nonhomogeneous polymer solutions,' J. Chem. Phys. 95, 2988-3000 https://doi.org/10.1063/1.460900
  7. Bird, R. B., R. C. Armstrong and O. Hassager, 1987a, Dynamics of Polymeric Liquids - Volume 1: Fluid Mechanics, John Wiley, New York, 2nd edn
  8. Bird, R. B., C. F. Curtiss, R. C. Armstrong and O. Hassager, 1987b, Dynamics of Polymeric Liquids - Volume 2: Kinetic Theory, John Wiley, New York, 2nd edn
  9. Bird, R. B., P. J. Dotson and N. L. Johnson, 1980, 'Polymer solution rheology based on a finitely extensible bead-spring chain model,' J. Non-Newtonian Fluid Mech. 7, 213-235 https://doi.org/10.1016/0377-0257(80)85007-5
  10. Bird, R. B. and H. C. Ottinger, 1992, 'Transport properties of polymeric liquids,' Ann. Rev. Phys. Chem. 43, 371-406 https://doi.org/10.1146/annurev.pc.43.100192.002103
  11. Boger, D. V., 1996, 'Viscoelastic fluid mechanics: interaction between prediction and experiment,' Experimental Thermal and Fluid Science 12, 234-243 https://doi.org/10.1016/0894-1777(95)00088-7
  12. Chilcott, M. D. and J. M. Rallison, 1988, 'Creeping flow of dilute polymer solutions past cylinders and spheres,' J. Non-Newtonian Fluid Mech. 29, 381-432 https://doi.org/10.1016/0377-0257(88)85062-6
  13. Clasen, C., J. P. Plog, W.-M. Kulicke, M. Owens, C. Macosko, L. E. Scriven, M. Verani and G. H. McKinley, 2006, 'How dilute are dilute solutions in extensional flows?' J. Rheol. 50, 849-881 https://doi.org/10.1122/1.2357595
  14. Clasen, C., M. Verani, J. P. Plog, G. H. McKinley and W.-M. Kulicke, 2004, 'Effiects of polymer concentration and molecular weight on the dynamics of visco-elasto-capillary breakup,' in Proceedings of the XIVth International Congress on Rheology, pp. PS22-1, Seoul, Korea
  15. Darinskii, A. A. and M. G. Saphiannikova, 1994, 'Kinetics of polymer chains in elongational flow,' J. Non-Crystall. Solids 172, 932-934 https://doi.org/10.1016/0022-3093(94)90601-7
  16. DeGennes, P. G., 1974, 'Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients,' J. Chem. Phys. 60, 5030-5042 https://doi.org/10.1063/1.1681018
  17. De Gennes, P.-G., 1979, Scaling Concepts in Polymer Physics, Cornell University Press
  18. Des Cloizeaux, J. and G. Jannink, 1990, Polymers in Solution, Their Modeling and Structure, Oxford Science Publishers
  19. Doi, M. and S. F. Edwards, 1986, The Theory of Polymer Dynamics, Oxford University Press, New York
  20. Duggal, R., P. Sunthar, J. R. Prakash and M. Pasquali, 2008, 'Multiscale simulation of dilute DNA in a roll-knife coating flow,' J. Rheol. 52, 1405-1425 https://doi.org/10.1122/1.2994729
  21. Entov, V. M. and E. J. Hinch, 1997, 'Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid,' J. Non-Newtonian Fluid Mech. 72, 31-53 https://doi.org/10.1016/S0377-0257(97)00022-0
  22. Fan, X. J., R. B. Bird and M. Renardy, 1978, 'A finite1y extensible bead-spring chain model for dilute polymer solutions,' J. Non-Newtonian Fluid Mech. 69, 1352-1360
  23. Fattal, R. and R. Kupferman, 2004, 'Constitutive laws for the matrix-logarithm of the conformation tensor,' J. Non-Newtonian Fluid Mech. 124, 281-285
  24. Fran$\c{c}$ois, N., Y. Amarouchene, B. Lounis and H. Kellay, 2009, 'Polymer conformations and hysteretic stresses in nonstationary flows of polymer solutions,' Europhys. Lett. 86. 34002 https://doi.org/10.1209/0295-5075/86/34002
  25. Fran$\c{c}$ois, N., D. Lasne, Y. Amarouchene, B. Lounis and H. Kellay, 2008, 'Drag enhancement with polymers,' Physical Review Letters 100, 018302 https://doi.org/10.1103/PhysRevLett.100.018302
  26. Gupta, R. K., D. A. Nguyen and T. Sridhar, 2000, 'Extensional viscosity of dilute polystyrene solutions: Effect of concentration and molecular weight,' Phys. Fluids 12, 1296-1318 https://doi.org/10.1063/1.870383
  27. Hern$\acute{a}$ndez-Ortiz, J., J. de Pablo and M. Graham, 2007, 'Fast computation of many-partiicle hydrodynamic and electrostatic interactions in a confined geometry,' Physical Review Letters 98, 140602 https://doi.org/10.1103/PhysRevLett.98.140602
  28. Hern$\acute{a}$ndez-Ortiz, J., H. Ma, J. de Pablo and M. Graham, 2008, 'Concentration distributions during flow of confined flowing polymer solutions at finite concentration: slit and grooved channel,' Korea-Australia Rheology Journal 20, 143-152
  29. Hinch, E. J., 1974, 'Mechanical models of dilute polymer solutions for strong flows with large polymer deformations,' in Proc. Symp. Polym. Lubrification 233, 241
  30. Hsieh, C.-C., L. Li and R. G. Larson, 2003, 'Modeling hydrodynamic interaction in Brownian dynamìcs: Simulations of extensional flows of dilute solutions of DNA and polystyrene,' J. Non-Newtonian Fluid Meeh. 113, 147-191 https://doi.org/10.1016/S0377-0257(03)00107-1
  31. Hsieh, C.-C., L. Li and R. G. Larson, 2005, 'Prediction of coilstretch hystercsis for dilute polystyrene molecules in extensional flow,' J. Rheol. 49, 1081-1089 https://doi.org/10.1122/1.2000971
  32. Hulsen, M. A., R. Fattal and R. Kupferman, 2005, 'Flow of viscoelastic fuids past a cylinder at high Weissenberg number: Stabìlized simulations using matrix logarithms,' J. Non-Newtonian Fluid Mech. 127, 27-39 https://doi.org/10.1016/j.jnnfm.2005.01.002
  33. Hulsen, M. A., A. P. G. van Heel and B. H. A. A. van den Brule, 1997, 'Simulation of viscoelastic flows using Brownian configuration fields,' J. Non-Newtonian Fluid Mech 70, 79-101 https://doi.org/10.1016/S0377-0257(96)01503-0
  34. Jendrejack, R. M., J. J. de Pablo and M. D. Graham, 2002, 'Stochastic simulations of DNA in flow: Dynamics and the effects of hydrodynamic interactions,' J. Chem. Phys. 116, 7752-7759 https://doi.org/10.1063/1.1466831
  35. Keunings, R., 2000, 'A survey of computational rheology,' in Proc . XIIIth Int. Congr. on Rheology, eds. D. M. Binding, N. E. Hudson, J. Mewis, J.-M. Piau, C. J. S. Petrie, P. Townsend, M. H. Wagner and K. Walters, vol. 1, pp. 7-14, Cambridge, UK
  36. Keunings, R., 2004, 'Micro-macro methods for the multiscale simulation of viscoelastic flow using molecular models of kinetic theory,' in Rheology Reviews 2004, eds. D. M. Binding and K. Walters, pp. 67-98, British Society of Rheology, Aberystwyth, Wales
  37. Kirkwood, J. G. and J. Riseman, 1948, 'The intrinsic viscosities and diffusion constants of flexible macromolecules in solution,' J. Chem. Phys. 16, 565-573 https://doi.org/10.1063/1.1746947
  38. Kr$\ddot{a}$ger, M., A. Alba-P$\acute{e}$rez, M. Laso. and H. C. $\ddot{O}$ttinger, 2000, 'Variance reduced Brownina simulation of a bead-spring chain under steady shear flow considering hydrodynamic interaction effects,' J. Chem. Phys. 113, 4767-4773 https://doi.org/10.1063/1.1288803
  39. Kumar, K. S. and J. R. Prakash, 2003, 'Equilibrium swelling and universal ratios in dilute polymer solutions: Exact Brownian dynamics simulations for a delta function excluded volume potential,' Macromolecules 36, 7842-7856 https://doi.org/10.1021/ma034296f
  40. Larson, R. G., 2004, 'The rheology of dilute solutions of flexible polymers: Progress and problems,' J Rheol. 49, 1-70
  41. Larson, R. G. H. Hu, D. E. Smith and S. Chu, 1999, 'Brownian dynamics simulations of a DNA molecule in an extensional flow field,' J. Rheol. 43, 267-304 https://doi.org/10.1122/1.550991
  42. Laso, M. and H. Ottinger, 1993, 'Calculation of viscoelastic flow using moleculat models: the CON54 NFFESSIT approach,' J. Non Newtonian Flui Mech. 47, 1-20 https://doi.org/10.1016/0377-0257(93)80042-A
  43. Li, L., R. G. Larson and T. Sridhar, 2000, 'Brownian dynamics simulations of dilute polystyrene solutions,' J. Rheol. 44, 291-322 https://doi.org/10.1122/1.551087
  44. Liu, S., B. Ashok and M. Muthukumar, 2004, 'Brownian dynamics simulations of bead-rod-chain in simple shear flow and elongational flow,' Polymer 45, 1383-1389 https://doi.org/10.1016/j.polymer.2003.07.012
  45. Marko, J. F. and E. D. Siggia, 1995, 'Stretching DNA,' Macromolecules 28, 8759-8770 https://doi.org/10.1021/ma00130a008
  46. McKinley, G. H. and T. Sridhar, 2002, 'Filament-stretching rheolmetry of complex fluids,' Annu. Rev. Fluid Mech. 34, 375-415 https://doi.org/10.1146/annurev.fluid.34.083001.125207
  47. $\ddot{O}$ttinger, H. C., 1987, 'Generalized Zimm model for dilute polymer solutions under theta conditions,' J. Chem. Phys. 86, 3731-3749 https://doi.org/10.1063/1.451975
  48. $\ddot{O}$ttinger, H. C., 1989, 'Gaussian approximation for Rouse chains with hydrodynamic interaction,' J. Chem. Phys. 90, 463-473 https://doi.org/10.1063/1.456496
  49. $\ddot{O}$ttinger, H. C., 1995, 'Letter to the editor: Mesh refinement limits in viscoelastic flow calculations?' J. Rheol. 39, 987-982 https://doi.org/10.1122/1.550627
  50. $\ddot{O}$ttinger, H. C., 1996, Stochastic Processes in Polymeric Fluids, Springer-Verlag
  51. Owens, R. G. and T. N. Phillips, 2002, Computational Rheology, Imperial College Press, London, 1st edn.
  52. Pasquali, M. and L. E. Scriven, 2004, 'Theoretical modelling of microstructured Iiquids: A simple thermodynamic approach,' J. Non-Newtonian Fluid Mech. 120, 101-135 https://doi.org/10.1016/j.jnnfm.2004.02.008
  53. Pham, T. T., P. Sunthar and J. R. Prakash, 2008, 'An alternative to the bead-rod model: Bead-spring chains with succcssive fine graining,' J. Non-NewtonÍan Fluid Mech. 149, 9-19 https://doi.org/10.1016/j.jnnfm.2007.05.012
  54. Prabhakar, R. and J. R. Prakash, 2002a, 'Behavior of FENE dumbbells with excluded volume in shear and extensional flows (paper 428),' in 9th APCChE Congress and CHEMECA, Christchurch, New Zealand 29 Sept-3 Oct
  55. Prabhakar, R. and J. R. Prakash, 2002b, 'Viscometric functions for Hookean dumbbells with excluded volume and hydrodynamic interaction,' J. Rheol. 46, 1191-1220 https://doi.org/10.1122/1.1501924
  56. Prabhakar, R. and J. R. Prakash, 2004, 'Multiplicativc separation of the influences of excluded volume, hydrodynamic interactions and finite extensibility on the rheological properties of dilute polymer solutions,' J. Non-Newtonian Fluid Mech. 116, 163-182 https://doi.org/10.1016/S0377-0257(03)00155-1
  57. Prabhakar, R. and J. R. Prakash, 2006, 'Gaussian approximation for finitely extensible bead-spring chains with hydrodynamic interaction,' J. Rheol. 50, 561-593 https://doi.org/10.1122/1.2206715
  58. Prabhakar, R., J. R. Prakash and T. Sridhar, 2004, 'A succcssive fine-graining scheme for predicting the rheological properties of dilute polymer solutions,' J. Rheol. 48, 1251-1278 https://doi.org/10.1122/1.1807841
  59. Prabhakar, R., J. R. Prakash and T. sridhar, 2006, 'Effect of configuration-dependent intramolecular hydrodynamic interaction on elastocapillary thinning and breakup of filaments of dilute polymer solutions,' J. Rheol. 50, 925-947 https://doi.org/10.1122/1.2357592
  60. Prakash, J. R., 1999, 'The kinetic theory of dilute solutions of flexible polymers: Hydrodynamic interaction,' in Advances in flow and rheology of non-Newtonian fluids, eds. D. A. Siginer, D. D. Kee and R. P. Chhabra, pp, 467-517, Rheology Series, Amsterdam, Elsevier Science
  61. Prakash, J. R., 2001, 'Rouse chains with excluded volume inter actions: Linear viscoelasticity,' Macromolecules 34, 3396-3411 https://doi.org/10.1021/ma0006880
  62. Prakash, J. R., 2002, 'Rouse chains with excluded volume interactions in steady simple shear flow,' J. Rheol. 46, 1353-1380 https://doi.org/10.1122/1.1514054
  63. Prakash, J. R. and H. C. $\ddot{O}$ttinger, 1999, 'Viscometric functions for a dilute solution of polymers in a good solvent,' Macromolecules 32, 2028-2043 https://doi.org/10.1021/ma981534b
  64. Rallison, J. M. and E. J. Hinch, 1988, 'Do we understand the physics in the constitutive equation?' J. Non-Newtonian Fluid Mech. 29, 37-55 https://doi.org/10.1016/0377-0257(88)85049-3
  65. Renardy, M., 2006, 'A comment on smoothness of viscoelastic stresses,' J. Non-Newtonian Fluid Mech. 138, 204-205 https://doi.org/10.1016/j.jnnfm.2006.05.006
  66. Rotne, J. and S. Prager, 1969, 'Variational treatment of hydrodynamic interaction in polymers,' J. Chem. Phys. 50, 4831-4837 https://doi.org/10.1063/1.1670977
  67. Rouse, P. E., 1953, 'A theory of the linear viscoelastic properties of dilute polymer solutions of coiling polymers,' J. Chem. Phys. 21, 1272-1280 https://doi.org/10.1063/1.1699180
  68. Sch$\ddot{a}$fer, L., 1999, Excluded Volume Effects in Polymer Solutions, Springer-Verlag, Berlin
  69. Schieber, J. D., 2006, 'Generalized Brownian configuration fields for Fokker-Planck equations includingcenter-of-mass diffusion,' J. of Non-Newtonian Fluid Mech. 135, 179-181 https://doi.org/10.1016/j.jnnfm.2006.02.007
  70. Schroeder, C. M., H. P. Babcock, E. S. G. Shaqfeh and S. Chu, 2003, 'Observation of polymer conformation hysteresis in extensional flow,' Science 301, 1515-1519 https://doi.org/10.1126/science.1086070
  71. Schroeder, C. M., E. S. G. Shaqfeh and S. Chu, 2004, 'Eflfect of hydrodynamic interactions on DNA dynamics in extensional flow: Simulation and single molecule experiment,' Macromolecules 37, 9242-9256 https://doi.org/10.1021/ma049461l
  72. Shaqfeh, E. S. G, 2005, 'The dynamics of single-molecule DNA in flows,' J. Non-Newtonian Fluid Mech. 130, 1-28 https://doi.org/10.1016/j.jnnfm.2005.05.011
  73. Sridhar, T., D. A. Nguyen, R. Prabhakar and J. R. Prakash, 2007, 'Rheological observation of glassy dynamics of dilute polymer solutions near the coil-stretch transition in elongational flows,' Physical Review Letters 98, 167801 https://doi.org/10.1103/PhysRevLett.98.167801
  74. Sunthar, P. and J. R. Prakash, 2005, 'Parameter-free prediction of DNA conformations in elongational flow by Successive Fine Graining,' Macromolecules 38, 617-640 https://doi.org/10.1021/ma035941l
  75. Sunthar, P. and J. R. Prakash, 2006, 'Dynamic scaling in dilute polymer solutions: The importance of dynamic correlations,' Europhys. Lett. 75, 77-83 https://doi.org/10.1209/epl/i2006-10067-y
  76. Tanner, R., 1975, 'Stresses in dilute solutions of bead-nonlinear-spring macromolecules. III. Friction coefficient varying with dumbbell extension,' J. Rheol. 19, 557-582 https://doi.org/10.1122/1.549385
  77. Tirtaatmadja, V. and T. Sridhar, 1993, 'A filament stretching device for measurement of extensional viscosity,' J. Rheol. 37, 1081-1102 https://doi.org/10.1122/1.550372
  78. Wapperom, P. and M. Renardy, 2005, 'Numerical prediction of the boundary layers in the flow around a cylinder using a fixed velocity field,' J. Non-Newtonian Fluid Mech. 125, 35-48 https://doi.org/10.1016/j.jnnfm.2004.09.005
  79. Warner, H. R., 1972, 'Kinetic theory and rheology of dilute suspensions of finitely extensible dumbbells,' Ind. Eng. Chem. Fundam. 11, 379-387 https://doi.org/10.1021/i160043a017
  80. Wedgewood, L. E., 1989, 'A Gaussian closure of the secondmoment equation for a Hookean dumbbell with hydrodynamic interaction,' J. Non-Newtonian Fluid Mech. 31, 127-142 https://doi.org/10.1016/0377-0257(89)80027-8
  81. Wedgewood, L. E. and H. C. $\ddot{O}$ttinger, 1988, 'A model of dilute polymer solutions with hydrodynamic interaction and finite extensibility. II. Shear flows,' J. Non-Newtonian Fluid Mech. 27, 245-264 https://doi.org/10.1016/0377-0257(88)85016-X
  82. Wiest, J. M., L. E. Wedgewood and R. B. Bird, 1989, "On coilstretch transitions in dilute polymer solutions,' J. Chem. Phys. 90, 587-594 https://doi.org/10.1063/1.456457
  83. Yamakawa, H., 1971, Modern Theory of Polymer Solutions, Harper and Row, New York
  84. Zimm, B. H., 1956, 'Dynamics of polymer molecules in dilute solution: Viscoelasticity, flow birefringence and dielectric loss,' J. Chem. Phys. 24, 269-278 https://doi.org/10.1063/1.1742462
  85. Zimm, B. H., 1980, 'Chain molecule hydrodynamics by the Monte-Carlo method and the validity of the Kirkwood-Riseman approximation,' Macromolecules 13, 592-602 https://doi.org/10.1021/ma60075a022
  86. Zylka, W., 1991, 'Gaussian approximation and Brownian dynamics simulations for Rouse chains with hydrodynamic interaction undergoing simple shear flow,' J. Chem. Phys. 94, 4628- 4636 https://doi.org/10.1063/1.460591