Component dynamics in miscible polymer blends: A review of recent findings

  • Watanabe, Hiroshi (Institute for Chemical Research, Kyoto University) ;
  • Urakawa, Osamu (Department of Macromolecular Science, Faculty of Science Osaka University)
  • Published : 2009.12.31

Abstract

Miscible polymer blends still have heterogeneity in their component chain concentration in the segmental length scale because of the chain connectivity (that results in the self-concentration of the segments of respective chains) as well as the dynamic fluctuation over various length scales. As a result, the blend components feel different dynamic environments to exhibit different temperature dependence in their segmental relaxation rates. This type of dynamic heterogeneity often results in a broad glass transition (sometimes seen as two separate transitions), a broad distribution of the local (segmental) relaxation modes, and the thermo-rheological complexity of this distribution. Furthermore, the dynamic heterogeneity also affects the global dynamics in the miscible blends if the component chains therein have a large dynamic asymmetry. Thus, the superficially simple miscible blends exhibit interesting dynamic behavior. This article gives a brief summary of the features of the segmental and global dynamics in those blends.

Keywords

References

  1. Alegria, A., J. Colmenero, K. L. Ngai and C. M. Roland, 1994, Observation of the component dynamics in a miscible polymer blend by dielectric and mechanical spectroscopies, Macromolecules 27, 4486 https://doi.org/10.1021/ma00094a009
  2. Chen, Q., Y. Matsumiya, Y. Masubuchi, H. Watanabe and T. Inoue, 2008, Component Dynamics in Polyisoprene/Poly(4-tert-butyl-styrene) Miscible Blends, Macromolecules 41, 8694-8711 https://doi.org/10.1021/ma8013417
  3. Chung, G. C., J. A. Kornfield and S. D. Smith, 1994, Component dynamics in miscible polymer blends - a 2-dimensional deuteron NMR investigation, Macromolecules 27, 964 https://doi.org/10.1021/ma00082a013
  4. Des Cloizeaux, J., 1990, Relaxation and viscosity anomaly of melts made of long entangled polymers - Time-dependent reptation, Macromolecules 23, 4678 https://doi.org/10.1021/ma00223a028
  5. Ediger, M. D., T. R. Lutz and Y. He, 2006, Dynamics in glassforming mixtures: Comparison of behavior of polymeric and non-polymeric components, J. Non-cyrst. Solids 352, 4718 https://doi.org/10.1016/j.jnoncrysol.2006.01.124
  6. Endoh, M. K., M. Takenaka, T. Inoue, H. Watanabe and T. Hashimoto, 2008, Shear small-angle light scattering studies of shear-induced concentration fluctuations and steady state viscoelastic properties, J. Chem. Phys. 128, Article # 164911 https://doi.org/10.1063/1.2899662
  7. Ferry, J. D., 1980, Viscoelastic Properties of Polymers, Third ed., Wiley, New York
  8. Fetters, L. J., D. J. Lohse, D. Richter, T. A. Witten and A. Zirkel, 1994, Connection between polymer molecular-weight, density, chain dimensions, and melt viscoelastic properties, Macromolecules 27, 4639 https://doi.org/10.1021/ma00095a001
  9. Fetters, L. J., D. J. Lohse and W. W. Graessley, 1999, Chain dimensions and entanglement spacings in dense macromolecular systems, J. Polym. Sci. Part B: Polym. Phys. 37, 1023 https://doi.org/10.1002/(SICI)1099-0488(19990515)37:10<1023::AID-POLB7>3.0.CO;2-T
  10. Fetters, L. J., D. J. Lohse and R. H. Colby, 2007, Chain Dimensions and Entanglement Spacings, in Physical Properties of Polymer Handbook (2nd edition), Mark, J. E. ed., Springer, New York
  11. De Gennes, P. G., 1979, Scaling Concept in Polymer Physics, Cornell Univ. Press, Ithaca
  12. Haley, J. C., T. P. Lodge, Y. Y. He, M. D. Ediger, E. D. von Meerwall and J. Mijovic, 2003, Composition and temperature dependence of terminal and segmental dynamics in polyisoprene/poly(vinylethylene) blends, Macromolecules 36, 6142 https://doi.org/10.1021/ma034414z
  13. Haley, J. C. and T. P. Lodge, 2005, Viscosity predictions for model miscible polymer blends: Including self-concentration, double reptation, and tube dilation, J. Rheol. 49, 1277 https://doi.org/10.1122/1.2039847
  14. Hirose, Y., O. Urakawa and K. Adachi, 2003, Dielectric study on the heterogeneous dynamics of miscible polyisoprene/poly (vinyl ethylene) blends: Estimation of the relevant length scales for the segmental relaxation dynamics, Macromolecules 36, 3699 https://doi.org/10.1021/ma0217940
  15. Hirose, Y., O. Urakawa and K. Adachi, 2004, Dynamics in disordered block copolymers and miscible blends composed of poly(vinyl ethylene) and polyisoprene, J. Polym. Sci. Part B: Polym. Phys. 42, 4084 https://doi.org/10.1002/polb.20190
  16. Inoue, T., Uemtasu, T. and Osaki, K., 2002, The significance of the Rousε segment: Its concentration dependence, Macromolecules 35, 820 https://doi.org/10.1021/ma011037m
  17. Kanaya T. and K. Kaji, 2001, Dynamics in the glassy state and near the glass transition of amorphous polymers as studied by neutron scattering, Adv. Polym. Sci. 154, 87 https://doi.org/10.1007/3-540-44484-X_2
  18. Kumar, S. K., R. H. Colby, S. H. Anastasiadis and G. Fytas, 1996, Concentration fluctuation induced dynamic heterogeneities in polymer blends, J. Chem. Phys. 105, 3777 https://doi.org/10.1063/1.472198
  19. Lodge, T. P. and T. C. B. McLeish, 2000, Self-concentrations and effective glass transition temperatures in polymer blends, Macromolecules 33, 5278 https://doi.org/10.1021/ma9921706
  20. Lutz, T. R., Y. He, M. D. Ediger, M. Pitsikalis and N. Had-jichristidis, 2004, Dilute polymer blends: Are the segmental dynamics of isolated polyisoprene chains slaved to the dynamics of the host polymer?, Macromolecules 37, 6440 https://doi.org/10.1021/ma049605w
  21. McLeish, T. C. B, 2002, Tube theory of entangled polymer dynamics, Adv. Phys. 51, 1379 https://doi.org/10.1080/00018730210153216
  22. Miller J. B., K. J. McGrath, C. M. Roland, C. A. Trask and A. N. Garoway, 1990, Nuclear-magnetic-resonance study of polyisoprene poly(vinylethylene) miscible blends, Macromolecules 23, 4543 https://doi.org/10.1021/ma00223a008
  23. Miura, N., W. J. MacKnight, S. Matsuoka and F. E. Karaz, 2001, Comparison of polymer blends and copolymers by broadband dielectric analysis, Ploymer 42, 6129 https://doi.org/10.1016/S0032-3861(01)00070-2
  24. Pathak, J. A., R. H. Colby, S. Y. Kamath, S. K. Kumar and R. Stadler, 1998, Rheology of miscible blends: SAN and PMMA, Macromolecules 31, 8988 https://doi.org/10.1021/ma9805708
  25. Pathak, J. A., R. H. Colby, G. Floudas and R. Jerome, 1999, Dynamics in miscible blends of polystyrene and poly(vinyl methyl ether), Macromolecules 32, 2553 https://doi.org/10.1021/ma9817121
  26. Pathak, J. A., S. K. Kumar and R. H. Colby, 2004, Miscible polymer blend dynamics: Double reptation predictions of linear viscoelasticity in model blends of polyisoprene and poly(vinyl ethylene), Macromolecules 37, 6994 https://doi.org/10.1021/ma049628a
  27. Takada, J., H. Sasaki, Y. Matsushima, A. Kuriyama, Y. Matsumiya, H. Watanabe, K. H. Ahn and W. Yu, 2008, Component chain dynamics in a miscible blend of low-M poly(p-t-butyl styrene) and polyisoprene, Nihon Reoroji Gakkaishi (J. Soc. Rheol. Japan) 36, 35 https://doi.org/10.1678/rheology.36.35
  28. Takenaka, M., S. Nishitsuji, T. Taniguchi, M. Yamaguchi, K. Tada and T. Hashimoto, 2006, Computer simulation study on the shear-induced phase separation in semidilute polymer solutions in 3-dimensional space, Polymer 47, 7846 https://doi.org/10.1016/j.polymer.2006.08.024
  29. Tomlin D. W. and C. M. Roland, 1992, Negative excess enthalpy in a Van der Waals polymer mixture, Macromolecules 25, 2994 https://doi.org/10.1021/ma00037a033
  30. Urakawa O., 2004, Studies on dynamic heterogeneity in miscible polymer blends and dynamics of flexible polymer, Nihon Reoroji Gakkaishi (J. Soc. Rheol. Japan) 32, 265 https://doi.org/10.1678/rheology.32.265
  31. Utracki, L. A., 1989, Polymer Alloys and Blends, Carl Hanser Verlag, Munich
  32. Watanabe, H., 1999, Viscoelasticity and dynamics of entangled polymers, Prog. Polym. Sci. 24, 1253 https://doi.org/10.1016/S0079-6700(99)00029-5
  33. Watanabe, H. 2001, Dielectric relaxation of type-A polymers in melts and solutions, Macromol. Rapid Commun. 22, 127 https://doi.org/10.1002/1521-3927(200102)22:3<127::AID-MARC127>3.0.CO;2-S
  34. Watanabe, H., S. Ishida, Y. Matsumiya and T. Inoue, 2004a, Viscoelastic and dielectric behavior of entangled blends of linear polyisoprenes having wideIy separated molecular weights: Test of tube dilation picture, Macromolecules 37, 1937 https://doi.org/10.1021/ma030443y
  35. Watanabe, H., S. Ishida, Y. Matsumiya and T. Inoue, 2004b, Test of full and partial tube dilation pictures in entangled blends of linear polyisoprenes, Macromolecules 37, 6619 https://doi.org/10.1021/ma0495689
  36. Watanabe, H., T. Sawada and Y. Matsumiya, 2006, Constraint release in star/star blends and partial tube dilation in monodisperse star systems, Macromolecules 39, 2553 https://doi.org/10.1021/ma0600198
  37. Watanabe, H., Y. Matsumiya, J. Takada, H. Sasaki, Y. Matsushima, A. Kuriyama, T. Inoue, K. H. Ahn, W. Yu and R. Krishnamoorti, 2007, Viscoelastic and dielectric behavior of a polyisoprene/poly(4-tert-butyl styrene) miscible blend, Macromolecules 40, 5389 https://doi.org/10.1021/ma070696h
  38. Yurekli K. and R. Krishnamoorti, 2004, Thermodynamic interactions in blends of poly(4-tert-butyl styrene) and polyisoprene by small-angle neutron scattering, J. Polym. Sci. Part B: Polym. Phys. 42, 3204 https://doi.org/10.1002/polb.20167
  39. Zetsche, A. and E. W. Fischer, 1994, Dielectric studies of the alpha-relaxation in miscible polymer blends and its relation to concentration fluctuation, Acta Polym. 45, 168 https://doi.org/10.1002/actp.1994.010450306
  40. Zhao, J., L. Zhang and M. D. Ediger, 2008, Poly(ethylene oxide) Dynamics in Blends with Poly(vinyl acetate): Comparison of Segmental and Terminal Dynamics, Macromolecules 41, 8030 https://doi.org/10.1021/ma8010526