References
- V. Benci and P. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math. 52 (1979), no. 3, 241–273. https://doi.org/10.1007/BF01389883
- C. C. Conley and E. Zehnder, Morse-type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math. 37 (1984), no. 2, 207–253. https://doi.org/10.1002/cpa.3160370204
- Y. Eliashberg and L. Polterovich, Partially ordered groups and geometry of contact transformations, Geom. Funct. Anal. 10 (2000), no. 6, 1448–1476. https://doi.org/10.1007/PL00001656
- M. Entov, Commutator length of symplectomorphisms, Comment. Math. Helv. 79 (2004), no. 1, 58–104. https://doi.org/10.1007/s00014-001-0799-0
- A. Floer, The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math. 41 (1988), no. 6, 775–813. https://doi.org/10.1002/cpa.3160410603
- A. Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988), no. 3, 513–547. https://doi.org/10.4310/jdg/1214442477
- A. Floer, Witten's complex and infinite dimensional Morse theory, J. Differential Geom. 30 (1989), 207–221. https://doi.org/10.4310/jdg/1214443291
- A. Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989), no. 4, 575–611. https://doi.org/10.1007/BF01260388
- K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian Intersection Floer Theory, book to appear, 2006, preprint.
- H. Hofer and D. Salamon, Floer homology and Novikov rings, The Floer memorial volume, 483–524, Progr. Math., 133, Birkhauser, Basel, 1995.
- Y. J. Lee, Reidemeister torsion in Floer–Novikov theory and counting pseudo-holo-morphic tori, I, J. Symplectic. Geom. 3 (2005), no. 2, 221–311. https://doi.org/10.4310/JSG.2005.v3.n2.a3
- D. McDuff, Geometric variants of the Hofer norm, J. Symplectic Geom. 1 (2002), no. 2, 197–252.
- J. Milnor, Lectures on the h-Cobordism Theorem, Notes by L. Siebenmann and J. Son-dow Princeton University Press, Princeton, N.J. 1965.
- Y.-G. Oh, Floer cohomology, spectral sequences, and the Maslov class of Lagrangian embeddings, Int. Math. Res. Not. IMRN (1996), no. 7, 305–346.
- Y.-G. Oh, Chain level Floer theory and Hofer's geometry of the Hamiltonian diffeomor-phism group, Asian J. Math. 6 (2002), no. 4, 579–624.
- Y.-G. Oh, Normalization of the Hamiltonian and the action spectrum, J. Korean Math. Soc. 42 (2005), no. 1, 65–83. https://doi.org/10.4134/JKMS.2005.42.1.065
- Y.-G. Oh, Spectral invariants and the length minimizing property of Hamiltonian paths, Asian J. Math. 9 (2005), no. 1, 1–18. https://doi.org/10.4310/AJM.2005.v9.n1.a1
- Y.-G. Oh, Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds, The breadth of symplectic and Poisson geometry, 525–570, Progr. Math., 232, Birkhauser Boston, Boston, MA, 2005. https://doi.org/10.1007/0-8176-4419-9_18
- Y.-G. Oh, Spectral invariants, analysis of the Floer moduli space, and geometry of the Hamiltonian diffeomorphism group, Duke Math. J. 130 (2005), no. 2, 199–295.
- L. Polterovich, The geometry of the group of symplectic diffeomorphisms, Lectures in Mathematics ETH Zurich. Birkhauser Verlag, Basel, 2001.
- D. Salamon and E. Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992), no. 10, 1303–1360. https://doi.org/10.1002/cpa.3160451004
- M. Usher, Spectral numbers in Floer theories, arXiv:0709.1127, preprint, 2007.
- C. Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann. 292 (1992), no. 4, 685–710. https://doi.org/10.1007/BF01444643
- A. Weinstein, Bifurcations and Hamilton's principle, Math. Z. 159 (1978), no. 3, 235–248. https://doi.org/10.1007/BF01214573
Cited by
- THE SHARP ENERGY-CAPACITY INEQUALITY vol.12, pp.03, 2010, https://doi.org/10.1142/S0219199710003889
- Boundary depth in Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds vol.184, pp.1, 2011, https://doi.org/10.1007/s11856-011-0058-9
- FLOER MINI-MAX THEORY, THE CERF DIAGRAM, AND THE SPECTRAL INVARIANTS[Author's correctin] vol.47, pp.6, 2010, https://doi.org/10.4134/JKMS.2010.47.6.1329
- Exact Lagrangian submanifolds, Lagrangian spectral invariants and Aubry–Mather theory 2017, https://doi.org/10.1017/S0305004117000561