DOI QR코드

DOI QR Code

CHUNG-TYPE LAW OF THE ITERATED LOGARITHM OF l-VALUED GAUSSIAN PROCESSES

  • Choi, Yong-Kab (DEPARTMENT OF MATHEMATICS GYEONGSANG NATIONAL UNIVERSITY) ;
  • Lin, Zhenyan (DEPARTMENT OF MATHEMATICS ZHEJIANG UNIVERSITY) ;
  • Wang, Wensheng (DEPARTMENT OF STATISTICS EAST CHINA NORMAL UNIVERSITY, DEPARTMENT OF MATHEMATICS HANGZHOU NORMAL UNIVERSITY)
  • Published : 2009.03.31

Abstract

In this paper, by estimating small ball probabilities of $l^{\infty}$-valued Gaussian processes, we investigate Chung-type law of the iterated logarithm of $l^{\infty}$-valued Gaussian processes. As an application, the Chung-type law of the iterated logarithm of $l^{\infty}$-valued fractional Brownian motion is established.

Keywords

References

  1. E. Csáki and M. Csörgő, Inequalities for increments of stochastic processes and moduli of continuity, Ann. Probab. 20 (1992), no. 2, 1031–1052. https://doi.org/10.1214/aop/1176989816
  2. M. Csörgő, Z. Lin, and Q.-M. Shao, Path properties for $l^{\infty}$-valued Gaussian processes, Proc. Amer. Math. Soc. 121 (1994), no. 1, 225–236. https://doi.org/10.2307/2160387
  3. M. Csörgő and P. Révész, Strong Approximations in Probability and Statistics, New York, Academic Press, 1981.
  4. M. Csörgő and Q.-M. Shao, Strong limit theorems for large and small increments of $l^p$-valued Gaussian processes, Ann. Probab. 21 (1993), no. 4, 1958–1990. https://doi.org/10.1214/aop/1176989007
  5. J. Hoffmann-Jørgensen, L. A. Shepp, and R. M. Dudley, On the lower tail of Gaussian seminorms, Ann. Probab. 7 (1979), no. 2, 319–342. https://doi.org/10.1214/aop/1176995091
  6. J.-P. Kahane, Some Random Series of Functions, 2nd edition, Cambridge Studies in Advanced Mathematics, 5. Cambridge University Press, Cambridge, 1985.
  7. J. Kuelbs, W. V. Li, and Q.-M. Shao, Small ball probabilities for Gaussian processes with stationary increments under Holder norms, J. Theoret. Probab. 8 (1995), no. 2, 361–386. https://doi.org/10.1007/BF02212884
  8. M. Ledoux and M. Talagrand, Probability in Banach Space, New York, Springer-Verlag, 1991.
  9. Z. Lin and Y. Qin, On large increments of $l^{\infty}$-valued Gaussian processes, In: Asym. Methods in Probab. and Statist., The Proceeding Volume of ICAMPS'97 (B. Szyszkowicz, Ed). Elsevier Scence B. V., Amsterdam, 1998.
  10. Z. Lin, C. Lu, and L.-X. Zhang, Path Properties of Gaussian Processes, Zhejiang Univ. Press, 2001.
  11. D. Monrad and H. Rootz´en, Small values of Gaussian processes and functional laws of the iterated logarithm, Probab. Theory Related Fields 101 (1995), no. 2, 173–192. https://doi.org/10.1007/BF01375823
  12. G. Samorodnitsky and M. S. Taqqu, Stable non-Gaussian Random Processes: Stochastic Models with infinite variance, Chapman & Hall, New York, 1994.
  13. Q.-M. Shao and D. Wang, Small ball probabilities of Gaussian fields, Probab. Theory Related Fields 102 (1995), no. 4, 511–517. https://doi.org/10.1007/BF01198847
  14. W. Wang and L.-X. Zhang, Chung-type law of the iterated logarithm on lp-valued Gaussian processes, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 2, 551–560. https://doi.org/10.1007/s10114-005-0580-y