DOI QR코드

DOI QR Code

SOME PROPERTIES OF TENSOR CENTRE OF GROUPS

  • Moghaddam, Mohammad Reza R. (FACULTY OF MATHEMATICAL SCIENCES FERDOWSI UNIVERSITY OF MASHHAD, KHAYYAM HIGHER EDUCATION INSTITUTE) ;
  • Niroomand, Payman (PAYMAN NIROOMAND FACULTY OF MATHEMATICAL SCIENCES FERDOWSI UNIVERSITY OF MASHHAD) ;
  • Jafari, S. Hadi (FACULTY OF MATHEMATICAL SCIENCES FERDOWSI UNIVERSITY OF MASHHAD)
  • Published : 2009.03.31

Abstract

Let $G{\otimes}G$ be the tensor square of a group G. The set of all elements a in G such that $a{\otimes}g\;=\;1_{\otimes}$, for all g in G, is called the tensor centre of G and denoted by $Z^{\otimes}^$(G). In this paper some properties of the tensor centre of G are obtained and the capability of the pair of groups (G, G') is determined. Finally, the structure of $J_2$(G) will be described, where $J_2$(G) is the kernel of the map $\kappa$ : $G{\otimes}\;{\rightarrow}\;G'$.

Keywords

References

  1. R. Brown, D. L. Johnson, and E. F. Robertson, Some computations of nonabelian tensor products of groups, J. Algebra 111 (1987), no. 1, 177–202. https://doi.org/10.1016/0021-8693(87)90248-1
  2. R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, With an appendix by M. Zisman. Topology 26 (1987), no. 3, 311–335. https://doi.org/10.1016/0040-9383(87)90004-8
  3. G. J. Ellis, Tensor products and q-crossed modules, J. London Math. Soc. (2) 51 (1995), no. 2, 243–258. https://doi.org/10.1112/jlms/51.2.243
  4. G. J. Ellis, Capability, homology, and central series of a pair of groups, J. Algebra 179 (1996), no. 1, 31–46. https://doi.org/10.1006/jabr.1996.0002
  5. T. Ganea, Homologie et extensions centrales de groupes, C. R. Acad. Sci. Paris Ser. A-B 266 (1968), A556–A558.
  6. N. D. Gilbert, The nonabelian tensor square of a free product of groups, Arch. Math. (Basel) 48 (1987), no. 5, 369–375. https://doi.org/10.1007/BF01189628
  7. C. Miller, The second homology group of a group; relations among commutators, Proc. Amer. Math. Soc. 3 (1952), 588–595. https://doi.org/10.2307/2032593
  8. S. Shahriari, On normal subgroups of capable groups, Arch. Math. (Basel) 48 (1987), no. 3, 193–198. https://doi.org/10.1007/BF01195351
  9. J. H. C. Whitehead, A certain exact sequence, Ann. of Math. (2) 52 (1950), 51-110. https://doi.org/10.2307/1969511

Cited by

  1. Categorizing finite p-groups by the order of their non-abelian tensor squares vol.15, pp.05, 2016, https://doi.org/10.1142/S021949881650095X