References
- R. L. Adler, A. G. Konheim, and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319. https://doi.org/10.2307/1994177
- J. Auslander, Minimal Flows and Their Extensions, North-Holland Mathematics Studies, 153. North-Holland Publishing Co., Amsterdam, 1988.
- F. Blanchard, B. Host, and A. Maass, Topological complexity, Ergodic Theory Dynam. Systems 20 (2000), no. 3, 641–662. https://doi.org/10.1017/S0143385700000341
- R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401–414. https://doi.org/10.2307/1995565
- R. Bowen and P. Walters, Expansive one-parameter flows, J. Differential Equations 12 (1972), 180–193. https://doi.org/10.1016/0022-0396(72)90013-7
- S. Ferenczi, Complexity of sequences and dynamical systems, Discrete Math. 206 (1999), no. 1-3, 145–154. https://doi.org/10.1016/S0012-365X(98)00400-2
- S. Ferenczi, Measure-theoretic complexity of ergodic systems, Israel J. Math. 100 (1997), 189–207 https://doi.org/10.1007/BF02773640
- S. Galatolo, Global and local complexity in weakly chaotic dynamical systems, Discrete Contin. Dyn. Syst. 9 (2003), no. 6, 1607–1624. https://doi.org/10.3934/dcds.2003.9.1607
- L. F. He, S. H. Fu, and X. H. Yan, Some dynamical properties of the minimal continuous semi-flows, Indian J. Pure Appl. Math. 36 (2005), no. 4, 189–201.
- W. Huang and X. D. Ye, Topological complexity, return times and weak disjointness, Ergodic Theory Dynam. Systems 24 (2004), no. 3, 825–846. https://doi.org/10.1017/S0143385703000543
- V. V. Nemiskii and V. V. Stepanov, Qualitative Theory of Differential Equations, Princeton Mathematical Series, No. 22 Princeton University Press, Princeton, N. J. 1960.
- K. Petersen, Disjointness and weak mixing of minimal sets, Proc. Amer. Math. Soc. 24 (1970), 278–280. https://doi.org/10.2307/2036347