Physiological Responses of Starry Flounder Platichthys stellatus during Freshwater Acclimation with Different Speeds in Salinity Change

염분변화 속도를 달리한 담수순화 과정에서 강도다리 Platichthys stellatus의 생리학적 반응

  • Kim, Young-Soo (Department of Aquaculture, Pukyong National University) ;
  • Do, Yong-Hyun (Department of Aquaculture, Pukyong National University) ;
  • Min, Byung-Hwa (Department of Aquaculture Management, National Fisheries Research and Development Institute) ;
  • Lim, Han-Kyu (Department of Aquaculture Management, National Fisheries Research and Development Institute) ;
  • Lee, Bok-Kyu (Department of Biology, Dongeui University) ;
  • Chang, Young-Jin (Department of Aquaculture, Pukyong National University)
  • Published : 2009.02.25

Abstract

Physiological responses (hematological factors, cortisol, glucose, osmolality, $Na^+$, $K^+$ and $Cl^-$) in starry flounder Platichthys stellatus were investigated during freshwater acclimation in the conditions of different speeds in salinity change with acute-decrease (AD) or stepwise-decrease (SD I and II). In AD of acute-decrease salinity, hematocrit (Ht), red blood cell (RBC) and hemoglobin (Hb) were rapidly increased more than SD I of stepwise-decrease salinity. But in case of SD II, Ht, RBC and Hb were no significant difference from beginning to end of this experiments. In AD, cortisol level significantly increased from $2.1{\pm}1.0{\mu}g/mL$ at the beginning to $13.7{\pm}0.2{\mu}g/mL$ at 6 hours and recovered to the basal levels ($3.1{\mu}g/mL$) at 10 days. In SD I, cortisol level was significantly increased from $2.1{\pm}1.0{\mu}g/mL$ at the beginning to $13.6{\pm}0.6{\mu}g/mL$ at 6 hours and recovered to the basal levels ($3.1{\pm}0.4{\mu}g/mL$) at 10 days. In SD II, cortisol level was a little increased from $2.1{\pm}1.0{\mu}g/mL$ at the beginning to $10.5{\pm}2.5$, $10.8{\pm}5.6{\mu}g/mL$ at 6, 12 hours and recovered to the basal level at 48 hours. Glucose level of AD, SD I, II were no significant difference from beginning to end of this experiments. Osmolality was $286.8{\pm}3.3\;mOsm/kg$ at the beginning. In SD II of stepwise-decrease, osmolality was no significant difference during rearing in freshwater (FW). But AD of stepwise-decrease and SD I of stepwise-decrease, osmolality was a little decreased end of this experiments. In AD of acute-decrease, only $Cl^-$ level was showed no significant difference from beginning to end of experiment and $Na^+$, $K^+$ levels were decreased. In case of SD I, $Cl^-$ level was showed no significant difference from beginning to end of experiment and $Na^+$, $K^+$ levels were decreased.

본 연구에서는 강도다리의 담수순화방법으로 급격한 염분변화(AD)와 단계적인 염분변화(SD II과 III)를 주었을 때 강도다리의 생리적 반응을 조사하였다. AD에서 Ht, RBC 및 Hb는 Exp. II에 비해 증가하는 값이 높게 나왔으며 회복하는 속도도 느렸다. 그러나 SD II는 Ht, RBC 및 Hb에서 실험개시시수준과 실험종료시의 값이 유의한 차이를 보이지 않았다. AD에서 cortisol의 농도는 실험개시시 $2.1{\pm}1.0{\mu}g/mL$로부터 실험개시 후 6시간째에 $13.7{\pm}0.2{\mu}g/mL$ 급격히 증가하였으나 10일째에 $3.10{\mu}g/mL$로 실험개시시 수준으로 회복되었다. SD I에서 cortisol의 농도는 실험개시시 $2.1{\pm}1.0{\mu}g/mL$로부터 6시간째에 $13.6{\pm}0.6{\mu}g/mL$로 증가하였고, 실험종료시인 10일째에 $3.1{\pm}0.4{\mu}g/mL$로 회복되었다. SD II에서 cortisol의 농도는 실험개시시 $2.1{\pm}1.0{\mu}g/mL$로부터 6시간째와 12시간째에 각각 $10.5{\pm}2.5$, $10.8{\pm}5.6{\mu}g/mL$로 증가하는 경향을 보였으나 48시간째부터 실험개시시 수준으로 회복되는 경향을 보였다. 글루코스 농도는 AD, SD I과 II에서 cortisol의 경향과 다르게 유의한 차이를 나타내지 않았다. 삼투질농도는 실험개시시 $286.8{\pm}3.3\;mOsm/kg$으로 나타났으며, AD와 단계적 염분변화 실험구인 SD I, II에서는 실험종료 시에 각각 $266.3{\pm}8.5$, $242.0{\pm}12.5$, $269.5{\pm}4.9\;mOsm/kg$으로 유의하게 감소하는 경향을 보였다. 혈장의 $Na^+$, $K^+$$Cl^-$ 농도는 AD의 경우, $Cl^-$(mEq/L)만이 실험개시시의 수준과 유의한 변화를 볼 수 없었고, $Na^+$(mEq/L)와 $K^+$(mEq/L)는 유의하게 감소하는 경향을 보였다. SD I에서도 $Cl^-$(mEq/L)만이 실험개시시의 수준과 유의한 변화를 볼 수 없었고, $Na^+$(mEq/L)와 $K^+$(mEq/L)는 유의하게 감소하는 경향을 보였다.

Keywords

References

  1. Barton, B. A. and G K. Iwama, 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and e:ffects of corticosteroids. Annu. Rev. Fish Dis., 1, 3-26 https://doi.org/10.1016/0959-8030(91)90019-G
  2. Boeuf, G and P. Patrick, 2001. How should salinity influence iish growh. Com. Biochem. Physiol. Part C, 130, 411-423
  3. Carmichael,G. J., J. R. Tomasso, B.A. Simco and K.B Davis. 1984. Characterization and alleviation ofstress associated with hauling largemouth bass. Trans. Am. Fish. Soc., 113, 778-785 https://doi.org/10.1577/1548-8659(1984)113<778:CAAOSA>2.0.CO;2
  4. Chang, Y. J. and J. W. Hur, 1999. Physiological responsεs of grey muIlet (Muhil cephalus) and Nile tilapia (Oreochromis niloticus) by rapid changes in salinity of rearing water. J. Korean Fish. Soc., 32, 310-316. (in Korean)
  5. Chang, Y. J., B. H. Min, H. J. Chang and J. W. Hur, 2002. Comparison of blood physiology injuvenile black seabream (Acanthopagrus schlegeli) reared in converted freshwater from seawater and seawater from freshwater. J. Korean Fish. Soc., 35, 595-600. (ín Korean)
  6. Davis, K. B. and N. C. Parker, 1990. Physiological stress in striped bass: E:ffect of acclimation temperature. Aquaιulture,91, 349-358
  7. Eddy, F.B., 1981. Effects of stress on osmotic and ionic regulation in fish. (in) A.D. Pickering (ed)., Stress and Fish. Academic Press, London, p.77-102
  8. Kim, M. J., S. C. Chung and C. B. Song, 2004. Effect of salínity on growth and survival of olivε flounder, Paralichthys olivaceus. Korean J. Ichthyol., 16, 100-106. (in Korean)
  9. Mazeaud,M., F. Mazeaud and E. M, Donaldson. 1977. Primary and secondary effects of stress in fish: Somc new data with a general review. Trans. Ame. Fish. Soc., 106, 201-212 https://doi.org/10.1577/1548-8659(1977)106<201:PASEOS>2.0.CO;2
  10. Min, B. H., 2003. Physiological responses of black seabream, Acanthopagrus schlegeli to rreshwater acclimation. Master thesis, Pukylmg National University, Busan, Korea, 55 pp. (in korean)
  11. Min, B. H., C. Y Choi and Y. J. Chang, 2005. Comparison of physiological conditions on black porgy, Acanthopagrus schlegeli acclimated and reared in freshwater and seawater. J. Aquaculture, 18, 37-44. (in Korean)
  12. Park, M. R., Y. J. Chang and D. Y Kang, 1999. Physiological response of the cultured olive flo.undεr (Paralichthys olivaccus) to the acute changes of water temper따ure. J. Aquaculture, 12, 221-228. (in Korean)
  13. Perry, S. F. and S. D. Reid, 1993. $\beta$-adrenergic signal transduction in fish : interactive e:ffects of catecholamines and cortisol. Fish. Physiol. Biochem., 11, 195-203 https://doi.org/10.1007/BF00004567
  14. Pickering, A. D. 1987. Stress responses and disease resistance in farmed fish. Fish diseases, a treat to the intemational fish farming industry. Conference 3, Aqua Nor, Trondheim, Norway
  15. Pickford, G. E., P. K. T. Pang, E. weinstein, J. Torreli, E. Hendlcr and F.H. Epstein, 1970. The response of hypophysectomized cyprinodont, Fundulus heteroclitus, to replacemεnt therapy with cortisol: effects on blood serum and sodium-potassium activated adenosine triphosphatase in the gills, kidney and intestinal mucosa. Gen. Comp. Endocrinol., 14, 524-534 https://doi.org/10.1016/0016-6480(70)90036-5
  16. Specker, C. B., C. S. Bradford, M. S. Fitzpatrick and R. Patino, 1989. Regulation of the interrenal offishes: Non-classical control mechrulism. Fish Physiol. Biochem., 7, 259-265 https://doi.org/10.1007/BF00004715
  17. Tomasso, J. R., K. B. Davis and N. C. Parker,1980. Plasma corticosteroid and electrolyte dynamics of hybrid striped bass (white bass x striped bass) during netting and hauling stress. Proc. World Maricult. Soc., 11, 303-310
  18. Tsuzuki, M. Y., K. Ogawa, C. A. Strussmann, M. Maita and F. Takashima, 2001. Physiological rεsponses during stress and subsequent recovery at different salinities in adult pejerrey Odontesthes bonariensis. Aquaculture, 200, 349-362 https://doi.org/10.1016/S0044-8486(00)00573-1
  19. Wedemeyer, G. A. and W. T Yasutake, 1977. Clinical methods for the assessment of the effects of environmental stress on fish health. U.S. Fish and Wildlife Service Technical Paper, 89, 18 pp. Washington D. C.
  20. Wedemeyer, G. A. and D. J. McLeay, 1981. Methods for determining the tolerance of fishes to environmental stressors. In Stress and Fish (Ed. by A. D. Pickering), Academic Press, London, 247-275