DOI QR코드

DOI QR Code

Comparative Effects of Oyster Mushrooms on Lipid Profile, Liver and Kidney Function in Hypercholesterolemic Rats

  • Alam, Nuhu (Department of Biology, University of Incheon) ;
  • Amin, Ruhul (National Mushroom Development and Extension Centre) ;
  • Khan, Asaduzzaman (Department of Biochemistry and Molecular Biology, Jahangirnagar University) ;
  • Ara, Ismot (Department of Zoology, Jahangirnagar University) ;
  • Shim, Mi-Ja (Department of Life Science, University of Seoul) ;
  • Lee, Min-Woong (Department of Biology, Dongguk University) ;
  • Lee, U-Youn (Department of Biology, University of Incheon) ;
  • Lee, Tae-Soo (Department of Biology, University of Incheon)
  • Published : 2009.03.31

Abstract

Comparative effects of oyster mushrooms on plasma and fecal lipid profiles and on liver and kidney function were evaluated in hyper and normocholesterolemic rats. Feeding of hypercholesterolemic rats a 5% powder of oyster mushrooms (Pleurotus ostreatus, P. sajor-caju and P. florida) reduced the plasma total cholesterol level by 37%, 21% and 16%, respectively and reduced the triglyceride level by 45%, 24% and 14%, respectively. LDL/HDL ratio decreased by 64%, 45% and 41% for P. sajor-caju, P. ostreatus and P. florida fed rats, respectively. Mushroom feeding also reduced body weight in hypercholesterolemic rats. However, it had no adverse effect on plasma bilirubin, creatinin and urea nitrogen level. Mushroom feeding also increased the total lipid and cholesterol excretion in the feces. The present study reveals that feeding of 5% oyster mushroom powder does not have detrimental effects on the liver and kidneys rather may provide health benefits for the cardiovascular-related complication by decreasing the atherogenic lipid profiles.

Keywords

References

  1. Bobek, P., Hromadova, M. and Ozdin, L. 1995. Oyster mushroom(Pleurotus ostreatus) reduces the activity of 3-hydroxy-3-methyl-glutaryl coA reductase in rat liver microsomes. Experientia 51:589-591 https://doi.org/10.1007/BF02128749
  2. Burtis, C. A. and Ashwood, E. R. 2006. Teitz Fundamentals of Clinical Chemistry, pp. 348-488. Reed Elsevier India Private Limited, New Delhi, India
  3. Chang, R. 1996. Functional properties of edible mushroom. Nutr. Rev. 54:91-93 https://doi.org/10.1111/j.1753-4887.1996.tb03878.x
  4. Chorvathoba, V., Bobek, P., Ginter, E. and Klvanova, J. 1993. Effect of the oyster fungus on glycemia and cholesterolemia in rats with insulin depended diabetes. Physol. Res. 42:175-179
  5. Dolphin, P. J. and Forsyth, S. J. 1983. Nascent hepatic lipoproteins in hypothyroid rats. J. Lipid Res. 24:541-551
  6. Fillias, L. C., Andrus, S. B., Mann, G. V. and Stare, F. J. 1956. Experimental production of gross atherosclerosis in the rat. J. Exp. Med. 104:539-554 https://doi.org/10.1084/jem.104.4.539
  7. Folch, J., Lees, M. and Sloane-Stanely, G. H. 1956. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497-509
  8. Fujioka, T., Nara, F., Tsujita, Y., Fukushige, J., Fukami, M. and Kuroda, M. 1995. The mechanism of lack of hypocholesterolemic effects of pravastatin sodium, a 3-hydroxy-3-methyl reductase inhibitor in rats. Biochim. Biophys. Acta. 1254:7-12 https://doi.org/10.1016/0005-2760(94)00154-Q
  9. Fukushima, M., Nakano, Y., Morii, Y., Ohashi, T., Fujiwara, Y. and Sonoyama, K. 2000. Hepatic receptor mRNA in rats is increased by dietary mushroom (Agaricus bisporus) fiber and sugar beet fiber. J. Nutr. 130:2151-2156 https://doi.org/10.1093/jn/130.9.2151
  10. Gamoh, S., Hashimoto, M. and Sugioka, K. 1999. Chronic administration of docosahexaenoic acid improves reference memory-related ability in young rats. Neuroscience 129:70-79
  11. Gamoh, S., Hashimoto, M., Hossian, M. S. and Masumura, S. 2001. Chronic administration of docosahxaenoic acid improves the performance of radial arm maze task in aged rats. Clin. Exp. Pharmacol. Physiol. 28:266-270 https://doi.org/10.1046/j.1440-1681.2001.03437.x
  12. Gunde-Cimerman, N., Plemanitas, A. and Cimerman, A. 1993. Pleurotus fungi produce mevinolin and inhibitor of HMG CoA reductase. FEMS Microbiol Lett. 111:333-337
  13. Hashimoto, M., Shinozuka, K. and Shahdat, H. M. 1998. Antihypertensive effect of all-cis-5, 8, 11, 14, 17-icosapentaenoate of aged rats is associated with an increase in the release of ATP from caudal artery. J. Vasc. Res. 35:55-62 https://doi.org/10.1159/000025565
  14. Hashimoto, M., Shinozuka, K. and Tanabe, Y. 1999. Hypotension induced by exercise is associated with enhanced release of adenyl purines from aged rat artery. Am. J. Physiol. 276:970-975
  15. Hashimoto, M., Shinozuka, K. and Gamoh, S. 1999a. The hypotensive effect of docosahexaenoic acid is associated with the enhanced released of ATP from the caudal artery of aged rats. J. Nutr. 129:70-76 https://doi.org/10.1093/jn/129.1.70
  16. Hashimoto, M., Hossain, M. S., Shimada, T., Yamasaki, H., Fujii, Y. and Shido, O. 2001. Effects of docosahexacnoic acid on annular lipid fluidity of the rat bile canalicular plasma membrane. J. Lipid Res. 42:1160-1168
  17. Hossian, M. S., Hashimoto, M., Gamoh, S. and Masumura, S. 1999. Antioxidative effects of docosahexaenoic acid in the cerebrum versus cerebellum and brain stem of aged hypercholesterolemic rats. J. Neurochem. 72:1133-1138 https://doi.org/10.1046/j.1471-4159.1999.0721133.x
  18. Hossain, M. S., Hashimoto, M., Gamoh, S. and Masumura, S. 1999a. Association of age-related decrease in platelet membrane fluidity with platelet lipid peroxide. Life Sci. 64:135-143
  19. Kabir, Y., Yamaguchi, M. and Kimura, S. 1987. Effect of shiitake(Lentinus edodes) and maitake (Grifola frondosa) mushrooms on blood pressure and plasma lipids of spontaneously hypertensive rats. J. Nutr. Sci. Vitaminol. 33:341-346 https://doi.org/10.3177/jnsv.33.341
  20. Mayes, P. A.1997. Metabolism of Lipids. In: Harper, H. A., Rodwell, V. W. and Mayes, P. A. Reviews of physiological chemistry, pp. 280-321. Lange publications, Los Altos
  21. Pathe, D. and Chevallier, F. 1976. Effects of thyroid state on cholesterol metabolism in the rat. Biochim. Biophys. Acta. 441:155-164 https://doi.org/10.1016/0005-2760(76)90290-3
  22. Roach, P. D., Balasubramaniam, S. and Hirata, F. 1993. The low density lipoprotein receptor and cholesterol synthesis are affected differently by dietary cholesterol in the rat. Biochim. Biophys. Acta. 1170:165-172 https://doi.org/10.1016/0005-2760(93)90067-J
  23. Schmidt, E. B., Christensen, J. H. and Ardestrup, L. 2001. Marine ω-3 fatty acid. Basic features and background. Lipids 36:65-68 https://doi.org/10.1007/s11745-001-0684-x
  24. Simopoulus, A. P. and Pavlou, K. N. 1997. Nutrition and Fitness, Metaboilic and Behavioral Aspects in Health and Disease, pp.1-266. World Review of Nutrition and Dietetics. Karger, Basel
  25. Spady, D. K. and Cuthbert, J. A. 1992. Regulation of hepatic sterol metabolism in the rat: parallel regulation of activity and mRNA for 7α-hydroxylase but not 3-hydroxy-3-methyl-glutaryl-coenzymeA reductase or low density lipoprotein receptor. J. Biol. Chem. 267:5584-5591
  26. Uchida, K., Satoh, T. and Chikai, T. 1996. Influence of cholesterol feeding on the bile acid metabolism in young and aged germ free rats. Jpn. J. Pharmacol. 71:113-118 https://doi.org/10.1254/jjp.71.113
  27. Wang, H. X., Ooi, V. E., Ng, T. B., Chiu, K. W. and Cang, S. T. 1996. Hypotensive and vasorelaxing activities of a lectin from the edible mushroom Tricholoma magnivelare. Pharmacol. Toxicol. 79:318-323 https://doi.org/10.1111/j.1600-0773.1996.tb00016.x
  28. Wissier, R. W., Eilert, M. L., Schroeder, M. A. and Cohen, L. 1954. Production of lipomatous and atheromatous arterial lesions in the albino rat. Am. Med. Assoc. Arch. Pathol. 57:333-351
  29. Yoshioka, Y., Tabeta, R., Saito, H., Uehara, N. and Fukuoka, F. 1985. Antitumor polysaccharides from P. ostreatus (Fr.) Quel. isolation and structure of a â-glucan. Carbohydrate Res. 140:93-100 https://doi.org/10.1016/0008-6215(85)85052-7

Cited by

  1. Fruiting Bodies vol.38, pp.4, 2010, https://doi.org/10.4489/MYCO.2010.38.4.295
  2. on Plasma, Feces and Hepatic Tissues in Hypercholesterolemic Rats vol.39, pp.2, 2011, https://doi.org/10.4489/MYCO.2011.39.2.096
  3. in Hypercholesterolemic Rats vol.39, pp.4, 2011, https://doi.org/10.5941/MYCO.2011.39.4.283
  4. Mushrooms: An Overview vol.28, pp.3, 2012, https://doi.org/10.1080/87559129.2011.637267
  5. Antioxidant and Antimicrobial Activities of Two Edible Mushroom Mycelia Obtained in the Presence of Different Nitrogen Sources vol.16, pp.2, 2013, https://doi.org/10.1089/jmf.2012.0030
  6. Can consumption of antioxidant rich mushrooms extend longevity?: antioxidant activity of Pleurotus spp. and its effects on Mexican fruit flies’ (Anastrepha ludens) longevity vol.37, pp.6, 2015, https://doi.org/10.1007/s11357-015-9847-0
  7. species (oyster mushrooms) for atherosclerosis: A review vol.20, pp.6, 2017, https://doi.org/10.1080/10942912.2016.1210162
  8. Biotechnological Significance of Mushroom: An Overview vol.3, pp.1, 2015, https://doi.org/10.17311/sciintl.2015.1.6
  9. Agaricus bisporus supplementation reduces high-fat diet-induced body weight gain and fatty liver development pp.1877-8755, 2018, https://doi.org/10.1007/s13105-018-0649-6
  10. Investigation of the protective effects of horse mushroom (Agaricus arvensis Schaeff.) against carbon tetrachloride-induced oxidative stress in rats vol.45, pp.5, 2018, https://doi.org/10.1007/s11033-018-4218-4