An Experimental Study on the Transient Response of Hydrogen Sensors Dependent on Gas Temperature and Humidity

가스의 온도 및 습도 변화에 따른 수소 센서 응답 특성에 대한 실험적 연구

  • Published : 2009.10.30

Abstract

In this study, the transient responses of hydrogen sensor against abrupt hydrogen release was experimentally studied for three most common types of hydrogen sensors, i.e. the semiconductor type, electrochemical type, and catalytic combustion type. The experimental study was conducted using a 1% hydrogen - 99% nitrogen mixture gas as the standard gas, while the temperature and relative humidity (RH) of the mixture gas was varied from $25^{\circ}C$ to $50^{\circ}C$ and from 50% to 100%, respectively. The temperature of the mixture gas was found to influence the output signal levels of hydrogen sensors, especially the catalytic combustion type. However, the effect of RH on the sensor response was not noticeable in the present experimental study. Thus, the signal levels of hydrogen sensors, in case of catalytic gas sensor need to be calibrated dependent on gas temperature, when the accurate determination of hydrogen concentration is important.

본 연구에서는 반도체식, 전기화학식, 접촉연소식의 가장 많이 사용되는 세 가지 수소센서 타입에 대하여 수소의 갑작스런 노출에 대한 과도응답을 실험적으로 연구하였다. 실험은 1% 농도의 수소-질소 혼합가스를 표준가스로 하여, 혼합가스의 온도 및 상대습도를 $25^{\circ}C{\sim}50^{\circ}C$ 및 50%~100%로 변화시키며 수행되었다. 혼합가스의 온도는 수소센서 출력신호의 크기에 영향을 미치며, 특히 접촉연소식 타입에 더 크게 영향을 미치는 것으로 판명되었다. 그러나, 혼합가스의 상대습도가 센서응답에 미치는 영향은 본 실험 연구에서는 나타나지 않았다. 따라서, 수소의 정확한 농도결정이 중요한 경우에는, 함께 측정된 온도에 기초하여 수소센서의 신호레벨을 보정할 필요가 있다.

Keywords

References

  1. Dunn, S., “Hydrogen future : toward a sustainable energy systems”, Int. J. Hydrogen Energy, 27, 235-264, (2002) https://doi.org/10.1016/S0360-3199(01)00131-8
  2. Winebrake, J.J. and B.P. Creswick, "The future of hydrogen fueling systems for transportation: and application of perspective-based scenario analysis using the hierachy process", Technol. Forecast Soc. Change, 70, 359-384, (2003) https://doi.org/10.1016/S0040-1625(01)00189-5
  3. Larminie, J. and A. Dicks, Fuel Cell Systems Explained, 2nd ed., John Wiley & Sons, (2003)
  4. Hord, J., "Is hydrogen a safe fuel?", Int. J. Hydrogen Energy, 3, 157-176, (1978) https://doi.org/10.1016/0360-3199(78)90016-2
  5. Swain, M.R., P. Filoso, E.S. Grilliot and M.N. Swain, “Hydrogen leakage into simple geometric enclosures”, Int. J. Hydrogen Energy, 28, 229-248, (2003) https://doi.org/10.1016/S0360-3199(02)00048-4
  6. Swain, M.R., E.S. Grilliot and M.N. Swain, “Experimental verification of a hydrogen risk assessment method”, Chem. Health Safety, 6, 28-32, (1999)