DOI QR코드

DOI QR Code

Identification and Application of Biomarkers in Molecular and Genomic Epidemiologic Research

  • Lee, Kyoung-Mu (Clinical Research Institute, Seoul National University Hospital) ;
  • Han, So-Hee (Department of Preventive Medicine, Seoul National University College of Medicine) ;
  • Park, Woong-Yang (Department of Biochemistry, Seoul National University College of Medicine) ;
  • Kang, Dae-Hee (Department of Preventive Medicine, Seoul National University College of Medicine)
  • Published : 2009.11.30

Abstract

Biomarkers are characteristic biological properties that can be detected and measured in a variety of biological matrices in the human body, including the blood and tissue, to give an indication of whether there is a threat of disease, if a disease already exists, or how such a disease may develop in an individual case. Along the continuum from exposure to clinical disease and progression, exposure, internal dose, biologically effective dose, early biological effect, altered structure and/or function, clinical disease, and disease progression can potentially be observed and quantified using biomarkers. While the traditional discovery of biomarkers has been a slow process, the advent of molecular and genomic medicine has resulted in explosive growth in the discovery of new biomarkers. In this review, issues in evaluating biomarkers will be discussed and the biomarkers of environmental exposure, early biologic effect, and susceptibility identified and validated in epidemiological studies will be summarized. The spectrum of genomic approaches currently used to identify and apply biomarkers and strategies to validate genomic biomarkers will also be discussed.

Keywords

References

  1. Schulte PA. A conceptual and historical framework for molecular epidemiology. In: Schulte PA, Perera FP, editors. Molecular Epidemiology: Principles and Practices. San Diego: Academic Press; 1993. p. 1-36
  2. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409(6822): 860-921 https://doi.org/10.1038/35057062
  3. Khoury MJ, Dorman JS. The human genome epidemiology network. Am J Epidemiol 1998; 148(1): 1-3 https://doi.org/10.1093/aje/148.1.1
  4. Strickland PT, Qian Z, Friesen MD, Rothman N, Sinha R. Metabolites of 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP) in human urine after consumption of charbroiled or fried beef. Mutat Res 2002; 506-507: 163-173 https://doi.org/10.1016/S0027-5107(02)00163-X
  5. Lee KM, Kang D, Lee SJ, Park SK, Lee KH, Choi JY, et al. Interactive effect of genetic polymorphism of glutathione S-transferase M1 and smoking on squamous cell lung cancer risk in Korea. Oncol Rep 2006; 16(5): 1035-1039
  6. Lee KM, Choi JY, Kang C, Kang CP, Park SK, Cho H, et al. Genetic polymorphisms of selected DNA repair genes, estrogen and progesterone receptor status, and breast cancer risk. Clin Cancer Res 2005; 11(12): 4620-4626 https://doi.org/10.1158/1078-0432.CCR-04-2534
  7. Kang D, Lee KH, Lee KM, Kwon HJ, Hong YC, Cho SH, et al. Design issues in crosssectional biomarkers studies: Urinary biomarkers of PAH exposure and oxidative stress. Mutat Res 2005; 592(1-2): 138-146 https://doi.org/10.1016/j.mrfmmm.2005.06.009
  8. Van Maele-Fabry G, Duhayon S, Mertens C, Lison D. Risk of leukaemia among pesticide manufacturing workers: A review and metaanalysis of cohort studies. Environ Res 2008;106(1):121-137 https://doi.org/10.1016/j.envres.2007.09.002
  9. Van Maele-Fabry G, Libotte V, Willems J, Lison D. Review and meta-analysis of risk estimates for prostate cancer in pesticide manufacturing workers. Cancer Causes Control 2006; 17(4): 353-373 https://doi.org/10.1007/s10552-005-0443-y
  10. Boffetta P, Clark S, Shen M, Gislefoss R, Peto R, Andersen A. Serum cotinine level as predictor of lung cancer risk. Cancer Epidemiol Biomarkers Prev 2006; 15(6): 1184-1188 https://doi.org/10.1158/1055-9965.EPI-06-0032
  11. McDonald SA, Hutchinson SJ, Bird SM, Robertson C, Mills PR, Dillon JF, et al. A record-linkage study of the development of hepatocellular carcinoma in persons with hepatitis C infection in Scotland. Br J Cancer 2008; 99(5): 805-810 https://doi.org/10.1038/sj.bjc.6604563
  12. Giordano TP, Henderson L, Landgren O, Chiao EY, Kramer JR, El-Serag H, et al. Risk of non-Hodgkin lymphoma and lymphoproliferative precursor diseases in US veterans with hepatitis C virus. JAMA 2007; 297(18): 2010-2017 https://doi.org/10.1001/jama.297.18.2010
  13. Mork J, Lie AK, Glattre E, Hallmans G, Jellum E, Koskela P, et al. Human papillomavirus infection as a risk factor for squamous-cell carcinoma of the head and neck. N Engl J Med 2001; 344(15): 1125-1131 https://doi.org/10.1056/NEJM200104123441503
  14. Wu HC, Wang Q, Yang HI, Ahsan H, Tsai WY, Wang LY, et al. Aflatoxin B1 exposure, hepatitis B virus infection, and hepatocellular carcinoma in Taiwan. Cancer Epidemiol Biomarkers Prev 2009; 18(3): 846-853 https://doi.org/10.1158/1055-9965.EPI-08-0697
  15. Gunter MJ, Divi RL, Kulldorff M, Vermeulen R, Haverkos KJ, Kuo MM, et al. Leukocyte polycyclic aromatic hydrocarbon-DNA adduct formation and colorectal adenoma. Carcinogenesis 2007; 28(7): 1426-1429 https://doi.org/10.1093/carcin/bgm022
  16. Rundle AG, Vineis P, Ahsan H. Design Options for molecular epidemiology research within cohort studies. Cancer Epidemiol Biomarkers Prev 2005; 14(8): 1899-1907 https://doi.org/10.1158/1055-9965.EPI-04-0860
  17. Kulasingam V, Diamandis EP. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Clin Pract Oncol 2008; 5(10): 588-599 https://doi.org/10.1038/ncponc1187
  18. Chatterjee SK, Zetter BR. Cancer biomarkers: Knowing the present and predicting the future. Future Oncol 2005; 1(1): 37-50 https://doi.org/10.1517/14796694.1.1.37
  19. Lee MS, Jun DH, Hwang CI, Park SS, Kang JJ, Park HS, et al. Selection of neural differentiation-specific genes by comparing profiles of random differentiation. Stem Cells 2006; 24(8): 1946-1955 https://doi.org/10.1634/stemcells.2005-0325
  20. Park WY, Hwang CI, Kang MJ, Seo JY, Chung JH, Kim YS, et al. Gene profile of replicative senescence is different from progeria or elderly donor. Biochem Biophys Res Commun 2001; 282(4): 934-939 https://doi.org/10.1006/bbrc.2001.4632
  21. Kim JH, Ha IS, Hwang CI, Lee YJ, Kim J, Yang SH, et al. Gene expression profiling of anti-GBM glomerulonephritis model: The role of NF-kappaB in immune complex kidney disease. Kidney Int 2004; 66(5): 1826-1837 https://doi.org/10.1111/j.1523-1755.2004.00956.x
  22. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 1999; 286(5439): 531-537 https://doi.org/10.1126/science.286.5439.531
  23. Yates JR 3rd. Mass spectrometry: From genomics to proteomics. Trends Genet 2000; 16(1): 5-8 https://doi.org/10.1016/S0168-9525(99)01879-X
  24. Holmes E, Nicholson JK, Tranter G. Metabonomic characterization of genetic variations in toxicological and metabolic responses using probabilistic neural networks. Chem Res Toxicol 2001; 14(2): 182-191 https://doi.org/10.1021/tx000158x
  25. Yoo KY, Kang D. Current researches on breast cancer epidemiology in Korea. Breast Cancer 2003; 10(4): 289-293 https://doi.org/10.1007/BF02967647
  26. Bonassi S, Norppa H, Ceppi M, Stromberg U, Vermeulen R, Znaor A, et al. Chromosomal aberration frequency in lymphocytes predicts the risk of cancer: results from a pooled cohort study of 22,358 subjects in 11 countries. Carcinogenesis 2008; 29(6): 1178-1183 https://doi.org/10.1093/carcin/bgn075
  27. Anttila T, Saikku P, Koskela P, Bloigu A, Dillner J, Ikaheimo I, et al. Serotypes of Chlamydia trachomatis and risk for development of cervical squamous cell carcinoma. JAMA 2001; 285(1): 47-51 https://doi.org/10.1001/jama.285.1.47
  28. Duffy SA, Taylor JM, Terrell JE, Islam M, Li Y, Fowler KE, et al. Interleukin-6 predicts recurrence and survival among head and neck cancer patients. Cancer 2008; 113(4): 750-757 https://doi.org/10.1002/cncr.23615
  29. Rinaldi S, Cleveland R, Norat T, Biessy C, Rohrmann S, Linseisen J, et al. Serum levels of IGF-I, IGFBP-3 and colorectal cancer risk: results from the EPIC cohort, plus a metaanalysis of prospective studies. Int J Cancer 2009. Epub 2009 Oct 6 https://doi.org/10.1002/ijc.24927
  30. Tokuhisa Y, Iizuka N, Sakaida I, Moribe T, Fujita N, Miura T, et al. Circulating cell-free DNA as a predictive marker for distant metastasis of hepatitis C virus-related hepatocellular carcinoma. Br J Cancer 2007; 97(10): 1399-1403 https://doi.org/10.1038/sj.bjc.6604034
  31. Weitzel JN, Ding S, Larson GP, Nelson RA, Goodman A, Grendys EC, et al. The HRAS1 minisatellite locus and risk of ovarian cancer. Cancer Res 2000; 60(2): 259-261
  32. Yang CX, Matsuo K, Wang ZM, Tajima K. Phase I/II enzyme gene polymorphisms and esophageal cancer risk: a meta-analysis of the literature. World J Gastroenterol 2005; 11(17): 2531-2538 https://doi.org/10.3748/wjg.v11.i17.2531
  33. Hashibe M, Brennan P, Strange RC, Bhisey R, Cascorbi I, Lazarus P, et al. Meta- and pooled analyses of GSTM1, GSTT1, GSTP1, and CYP1A1 genotypes and risk of head and neck cancer. Cancer Epidemiol Biomarkers Prev 2003;12(12):1509-1517
  34. Zhuo X, Cai L, Xiang Z, Li Q, Zhang X. GSTM1 and GSTT1 polymorphisms and nasopharyngeal cancer risk: An evidencebased meta-analysis. J Exp Clin Cancer Res 2009; 28: 46 https://doi.org/10.1186/1756-9966-28-46
  35. Kiyohara C, Yoshimasu K. Genetic polymorphisms in the nucleotide excision repair pathway and lung cancer risk: A metaanalysis. Int J Med Sci 2007; 4(2): 59-71
  36. Hung RJ, Hall J, Brennan P, Boffetta P. Genetic polymorphisms in the base excision repair pathway and cancer risk: A HuGE review. Am J Epidemiol 2005; 162(10): 925-942 https://doi.org/10.1093/aje/kwi318
  37. Li H, Ha TC, Tai BC. XRCC1 gene polymorphisms and breast cancer risk in different populations: A meta-analysis. Breast 2009; 18(3): 183-191 https://doi.org/10.1016/j.breast.2009.03.008
  38. Huang WY, Olshan AF, Schwartz SM, Berndt SI, Chen C, Llaca V, et al. Selected genetic polymorphisms in MGMT, XRCC1, XPD, and XRCC3 and risk of head and neck cancer: A pooled analysis. Cancer Epidemiol Biomarkers Prev 2005; 14(7): 1747-1753 https://doi.org/10.1158/1055-9965.EPI-05-0162
  39. Lee DH, Kim EG, Park KS, Jeong SW, Kong ID, Lee JW. Characteristics of P2X7-like receptor activated by adenosine triphosphate in HIT-T15 cells. Pancreas 2007; 35(1): 53-62 https://doi.org/10.1097/01.mpa.0000278676.58491.ef
  40. Lee SA, Lee KM, Park WY, Kim B, Nam J, Yoo KY, et al. Obesity and genetic polymorphism of ERCC2 and ERCC4 as modifiers of risk of breast cancer. Exp Mol Med 2005; 37(2): 86-90 https://doi.org/10.1038/emm.2005.12
  41. Uetrecht J. Idiosyncratic drug reactions: current understanding. Annu Rev Pharmacol Toxicol 2007; 47: 513-539 https://doi.org/10.1146/annurev.pharmtox.47.120505.105150
  42. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, et al. Global variation in copy number in the human genome. Nature 2006; 444(7118): 444-454 https://doi.org/10.1038/nature05329
  43. Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Acta 2007; 1775(1): 138-162 https://doi.org/10.1016/j.bbcan.2006.08.007
  44. Brown PO, Botstein D. Explorin the new world of the genome with DNA microarrays. Nat Genet 1999; 21(1 Suppl): 33-37 https://doi.org/10.1038/4462
  45. Park WY, Hwang CI, Im CN, Kang MJ, Woo JH, Kim JH, et al. Identification of radiationspecific responses from gene expression profile. Oncogene 2002; 21(55): 8521-8528 https://doi.org/10.1038/sj.onc.1205977
  46. Van‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415(6871): 530-536 https://doi.org/10.1038/415530a
  47. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature 2000; 406(6797): 747-752 https://doi.org/10.1038/35021093
  48. Nelson KM, Weiss GJ. MicroRNAs and cancer: past, present, and potential future. Mol Cancer Ther 2008; 7(12): 3655-3660 https://doi.org/10.1158/1535-7163.MCT-08-0586
  49. Anderson NL, Taylor J, Hofmann JP, Esquer- Blasco R, Swift S, Anderson NG. Simultaneous measurement of hundreds of liver proteins: Application in assessment of liver function. Toxicol Pathol 1996; 24(1): 72-76 https://doi.org/10.1177/019262339602400110
  50. Washburn MP, Wolters D, Yates JR 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 2001; 19(3): 242-247 https://doi.org/10.1038/85686
  51. Cutler P. Protein arrays: The current state-ofthe- art. Proteomics 2003; 3(1): 3-18 https://doi.org/10.1002/pmic.200390007
  52. Collings FB, Vaidya VS. Novel technologies for the discovery and quantitation of biomarkers of toxicity. Toxicology 2008; 245(3): 167-174 https://doi.org/10.1016/j.tox.2007.11.020
  53. Robertson DG, Reily MD, Baker JD. Metabonomics in preclinical drug development. Expert Opin Drug Metab Toxicol 2005; 1(3): 363-376 https://doi.org/10.1517/17425255.1.3.363
  54. Woo HG, Park ES, Lee JS, Lee YH, Ishikawa T, Kim YJ, et al. Identification of potential driver genes in human liver carcinoma by genomewide screening. Cancer Res 2009; 69(9): 4059-4066 https://doi.org/10.1158/0008-5472.CAN-09-0164
  55. Bensalah K, Montorsi F, Shariat SF. Challenges of cancer biomarker profiling. Eur Urol 2007; 52(6): 1601-1609 https://doi.org/10.1016/j.eururo.2007.09.036

Cited by

  1. Application of classic epidemiological studies and proteomics in research of occupational and environmental exposure to lead, cadmium and arsenic vol.216, pp.1, 2009, https://doi.org/10.1016/j.ijheh.2012.03.002
  2. Could 8-oxoguanine DNA glycosylase 1 Ser326Cys polymorphism be a biomarker of susceptibility in cancer? vol.30, pp.9, 2014, https://doi.org/10.1177/0748233712463777