DOI QR코드

DOI QR Code

Heat Transfer Enhancement from Plain and Micro Finned Surfaces According to Liquid Subcooling

작동유체의 과냉도에 따른 매끈한 표면과 마이크로 핀 표면에서의 열전달 촉진에 관한 연구

  • 임태우 (한국해양대학교 기관시스템공학부) ;
  • 유삼상 (한국해양대학교 기계정보공학부) ;
  • 최형식 (한국해양대학교 기계정보공학부)
  • Published : 2009.11.30

Abstract

Experiments were conducted to evaluate pool boiling heat transfer performance between plain and micro finned surfaces with FC-72, which is chemically and electrically stable. Three kinds of micro fins with the dimension of $100{\mu}m\;{\times}\;10{\mu}m$, $150{\mu}m\;{\times}\;10{\mu}m$ and $200{\mu}m\;{\times}\;10{\mu}m$ (width $\times$ height) were fabricated on the surface of a silicon chip. The experiments were carried out on the liquid subcooling of 5, 10 and 15 K under the atmospheric condition. The micro finned surface with a larger fin width of $200{\mu}m$ provided a better pool boiling heat transfer performance. Also, the micro finned surfaces showed a sharp increase in heat flux with increasing wall superheat and a larger heat transfer enhancement compared to a plain surface.

화학적, 전기적 안정성을 가진 FC-72 냉매를 사용하여 매끈한 표면과 마이크로 핀 표면 사이의풀 비등 열전달 성능을 평가하기 위한 실험을 수행하였다. 폭과 높이의 치수가 $100{\mu}m\;{\times}\;10{\mu}m$, $150{\mu}m\;{\times}\;10{\mu}m$ and $200{\mu}m\;{\times}\;10{\mu}m$인 세 종류의 마이크로 핀을 실리콘 칩 표면 위에 가공하였다. 실험은 5, 10 and 15 K의 액체 과냉도에서 이루어졌다. 세 종류의 마이크로 핀 중에서 핀 폭이 $200{\mu}m$인 핀 표면에서 풀 비등 열전달 성능이 더 좋게 나타났다. 또한, 마이크로 핀 표면은 매끈한 표면과 비교했을 때 벽면 과열도가 증가함에 따라 열유속이 급격히 증가하였으며, 열전달도 향상되었다.

Keywords

References

  1. Mohamed Gad-el-Hak, MEMS Design and Fabrication Taylor & Francis, 2006
  2. Maluf, N. An Introduction to microelectromechanical system engineering,Artech House, 2000
  3. 최재성, 반도체 소자 공정기술, 청문각, 2006
  4. Nadim Maluf, An Introduction to Microelectromechanical System Engineering, Artech House, Inc, 2000
  5. J. P. O'Connor, S. M. You and J. Y. Chang, "Gas saturated pool boiling heat transfer from smooth and microporous surfaces in FC-72", Trans. ASME J. Heat Transfer 118, pp.662-667, 1996 https://doi.org/10.1115/1.2822683
  6. K. N. Rainey, S. M. You and S. Lee, "Effect of pressure, subcooling, and dissolved gas on pool boiling heat transfer from microporous, square pin-finned surfaces in FC-72", Int. J. Heat Mass Transfer 46, pp. 23-25, 2003 https://doi.org/10.1016/S0017-9310(02)00257-0
  7. T. M. Anderson, and I. Mudawar, "Microelectronic cooling by enhanced pool boiling of a dielectric fluorocarbon liquid", ASME J. Heat Transfer 111, pp. 752–59, 1989 https://doi.org/10.1115/1.3250747
  8. U.P. Hwang, K.F. Moran, "Boiling heat transfer of silicon integrated circuits chip mounted on a substrate", Heat Transfer Electron. Equip. ASME HTD 20, pp. 53–9, 1981
  9. N. K. Phadke, S. H. Bhavnani, A. Goyal, R. C. and Jaeger, J. S. Goodling, "Re-entrant cavity surface enhancements for immersion cooling of silicon multichip packages", IEEE Trans. Comp. Hybrids Manufact. Technol. 15, pp. 815–22, 1992 https://doi.org/10.1109/33.180047
  10. H. Kubo, H. Takamatsu, and H. "Honda, Effects of size and number density of microreentrant cavities on boiling heat transfer from a silicon chip immersed in degassed and gas dissolved FC-72", J. Enhanced Heat Transfer 6, pp. 151–60, 1999 https://doi.org/10.1615/JEnhHeatTransf.v6.i2-4.80
  11. H. Honda, H. Takamatsu, and J. J. Wei, "Effect of the size of micro-pin-fin on boiling heat transfer from silicon chips immersed in FC-72", Proceedings of 12th International Heat Transfer Conference, Grenoble, France, vol. 4, pp. 75-80, 2002
  12. H. Honda, H. Takamatsu, and J. J. Wei, "Boiling of FC-72 on silicon chips with Micro-Pin-Fins and submicronscale roughness", Trans. ASME J. Heat Transfer, vol. 124, pp. 383-390, 2002 https://doi.org/10.1115/1.1447937
  13. I. Mudawar, and T. M. Anderson, "High flux electronic cooling by means of pool boiling-part Ⅱ: Optimization of pool boisurface geometry", Heat Transfer Electron. ASME HTD ectron. A35-49, 1989
  14. J. P. O'Connor, S. M. You, and J. Y. Chang, "Gas sturated pool boiling heat transfer from smooth and microporous surfaces in FC-72", Trans. ASME J. Heat Transfer 118, pp. 662-667, 1996 https://doi.org/10.1115/1.2822683
  15. K. N. Rainey, and S. M. You, "Effects of heater size and orientation on pool boiling heat transfer from microporous coated surfaces" Int. J. of Heat and Mass Transfer, Vol. 44, pp. 2589-2599, 2001 https://doi.org/10.1016/S0017-9310(00)00318-5