무선 센서 망을 위한 K-연결 (K+1)-감지도 고장 감내 위상 제어 프로토콜

K-connected, (K+1)-covered Fault-tolerant Topology Control Protocol for Wireless Sensor Network

  • 박재현 (중앙대학교 공과대학 컴퓨터공학부)
  • 발행 : 2009.11.30

초록

본 논문에서는 무선 센서 망으로 k-연결 (k+1)-감지 고장 감내 위상을 구성하는 분산 위상 제어 프로토콜을 제시한다. 센서 망에 있어 최근에 주목받고 있는 근본적인 문제는 최소한의 활동하는 노드들로 위상을 구성하며, 다양한 응용과 환경에 적합한 감지도와 망 연결수를 제공하는 것이다. 망의 수용 능력을 증대시키는 동시에 에너지 효율성을 개선하고 더불어 망의 연결성을 유지하기 위해서, 많은 위상 제어 알고리즘들이 제안되어 왔다. 대부분의 알고리즘들은 연결되는 링크들의 수를 줄임으로써, 노드들의 고장이나 파손시에 여분의 경로배정이 어렵게 되는 문제를 발생시킨다. 특정 감지도를 보장하며 이 문제를 해결하는 프로토콜이 제안되었으나, 감지도 계산을 위해서는 정확한 위치정보가 필요하고, k-감지인 경우에 대부분의 활동 센서들이 2k-연결을 유지한다. 우리는 감지범위의 반지름이 통신 범위의 반지름의 두 배인 조건이 연결이 감지범위를 함의하기 위한 필요충분조건임을 증명하고, 이에 기반하여 무선 센서 망에서 k-연결을 제공하며 (k+1)-감지를 보장하는 고장 감내 위상을 구성하는 프로토콜을 제시한다. 제안한 분산된 알고리즘은 정확한 위치정보 없이 (k+1)-감지를 보장하며, 복잡도는 O(1) 이다. 모의 실험하여 패킷손실율과 전송 지연시간 그리고 에너지 소비율을 분석 하였다.

In this paper, we present a distributed fault-tolerant topology control protocol that configure a wireless sensor network to achieve k-connectivity and (k+1)-coverage. One fundamental issue in sensor networks is to maintain both sensing coverage and network connectivity in order to support different applications and environments, while some least active nodes are on duty. Topology control algorithms have been proposed to maintain network connectivity while improving energy efficiency and increasing network capacity. However, by reducing the number of links in the network, topology control algorithms actually decrease the degree of routing redundancy. Although the protocols for resolving such a problem while maintaining sensing coverage were proposed, they requires accurate location information to check the coverage, and most of active sensors in the constructed topology maintain 2k-connectivity when they keep k-coverage. We propose the fault-tolerant topology control protocol that is based on the theorem that k-connectivity implies (k+1)-coverage when the sensing range is at two times the transmission range. The proposed distributed algorithm does not need accurate location information, the complexity is O(1). We demonstrate the capability of the proposed protocol to provide guaranteed connectivity and coverage, through both geometric analysis and extensive simulation.

키워드

참고문헌

  1. L. Wang and Y. Xiao, 'A survey of energy-efficient scheduling mechanisms in sensor networks,' Mob. Netw. Appl., Vol. 11, No. 5, pp. 723-740, 2006 https://doi.org/10.1007/s11036-006-7798-5
  2. X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill, 'Integrated coverage and connectivity configuration in wireless sensor networks,' Proceedings of the 1st International Conference on Embedded Networked Sensor Systems (Sensys '03), pp. 28-39, 2003
  3. H. Zhang and J. C. Hou, 'Maintaining sensing coverage and connectivity in large sensor networks,' Proceedings of NSF International Workshop on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks, 2004
  4. H. Zhang and J. C. Hou, 'Maintaining sensing coverage and connectivity in large sensor networks,' Ad Hoc & Sensor Wireless Networks, Vol.1, pp.89-124, 2005
  5. H. M. Ammari, and S. K. Das, 'Fault tolerance measures for large-scale wireless sensor networks,' ACM Trans. Auton. Adapt. Syst., Vol. 4, No. 1, pp. 1-28. 2009 https://doi.org/10.1145/1462187.1462189
  6. N. Li, J. C. Hou, 'Localized Fault-Tolerant Topology Control in Wireless Ad Hoc Networks,' IEEE Trans. on Parallel and Distributed Systems, vol. 17, no. 4, pp. 307-320, 2006 https://doi.org/10.1109/TPDS.2006.51
  7. C.-F. Huang and Y.-C. Tseng, 'The coverage problem in a wireless sensor network,' Proceedings of the 2nd ACM International Conference on Wireless Sensor Networks and Applications (WSNA '03), pp. 115-121, 2003 https://doi.org/10.1145/941350.941367
  8. C.-F. Huang and Y.-C. Tseng, 'The coverage problem in a wireless sensor network,' ACM Mobile Networks and Applications (MONET), special issue on Wireless Sensor Networks, Vol. 10, No. 4, pp. 519-528, 2005 https://doi.org/10.1007/s11036-005-1564-y
  9. M. Lu, J. Wu, M. Cardei, and M. Li, 'Energy-efficient connected coverage of discrete targets in wireless sensor networks,' International Journal of Ad Hoc and Ubiquitous Computing, Vol. 4, No.3/4, pp. 137-147, 2009 https://doi.org/10.1504/IJAHUC.2009.024516
  10. P.R. Scheeper, B. Nordstrand, J.O. Gullov, B. Liu, T. Clausen, L. Midjord, and T. Storgaard-Larsen, 'A new measurement microphone based on MEMS technology,' Journal of Microelectromechanical Systems, Vol. 12, No. 6, pp. 880-891, 2003 https://doi.org/10.1109/JMEMS.2003.820260
  11. R.F. Wolffenbuttel, 'State-of-the-art in integrated optical microspectrometers,' IEEE Trans. on Instrumentation and Measurement, Vol. 53, No.1, pp. 197-202, 2004 https://doi.org/10.1109/TIM.2003.821490
  12. B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, 'Span: an energyefficient coordination algorithm for topology maintenance in ad hoc wireless networks,' Wireless Networks, Vol. 8, No. 5, pp. 481-494, 2002 https://doi.org/10.1023/A:1016542229220
  13. V. Shnayder, M. Hempstead, B. Chen, G. W. Allen, and M. Welsh, 'Simulating the power consumption of large-scale sensor network applications,' Proceedings of the 2nd international Conference on Embedded Networked Sensor Systems (SenSys '04), ACM, New York, NY, pp. 188-200, 2004 https://doi.org/10.1145/1031495.1031518
  14. A. Cerpa and D. Estrin, 'Ascent: Adaptive self-configuring sensor networks topologies,' Proceedings of IEEE INFOCOM 2002, New York, NY, June 2002 https://doi.org/10.1109/INFCOM.2002.1019378
  15. Jae-Hyun Park, 'Distributed construction of the multiple-ring topology of the connected dominating set for the mobile ad hoc networks: Boltzmann machine approach,' Journal of KISS: Information Networking, Vol. 34, No. 3, pp. 226-238, 2007 (In Korean)
  16. Duracell, (1998) 'Performance characteristics,' [On-Line]. Available: www.durac ell.co m/oe m/prima ry /lithium / performance.asp