Dose Distribution and Image Quality in the Gantry Aperture for CT Examinations

전산화단층촬영 검사 시 Gantry Aperture 내의 선량분포와 영상의 질

  • Cho, Pyong-Kon (Department of Radiology, Ansan Hospital, Korea University Medical Center) ;
  • Kim, You-Hyun (Department of Radiologic Science, College of Health Science, Korea University) ;
  • Choi, Jong-Hak (Department of Radiologic Science, College of Health Science, Korea University) ;
  • Lee, Ki-Yeol (Department of Radiology, Ansan Hospital, Korea University Medical Center) ;
  • Kim, Hyung-Cheol (Department of Radiology, Ansan Hospital, Korea University Medical Center) ;
  • Kim, Jang-Seob (Department of Radiology, Ansan Hospital, Korea University Medical Center) ;
  • Shin, Dong-Chul (Department of Radiology, Ansan Hospital, Korea University Medical Center) ;
  • Lee, Sung-Hyun (Department of Diagnostic Radiology, Guro Hospital, Korea University Medical Center) ;
  • Lee, Jun-Hyub (Department of Diagnostic Radiology, Anam Hospital, Korea University Medical Center) ;
  • Shin, Gwi-Soon (Department of` Radiologic Technology, Dongnam Health College)
  • 조평곤 (고려대학교 의료원 안산병원 영상의학과) ;
  • 김유현 (고려대학교 보건과학대학 방사선과) ;
  • 최종학 (고려대학교 보건과학대학 방사선과) ;
  • 이기열 (고려대학교 의료원 안산병원 영상의학과) ;
  • 김형철 (고려대학교 의료원 안산병원 영상의학과) ;
  • 김장섭 (고려대학교 의료원 안산병원 영상의학과) ;
  • 신동철 (고려대학교 의료원 안산병원 영상의학과) ;
  • 이성현 (고려대학교 의료원 구로병원 영상의학과) ;
  • 이준협 (고려대학교 의료원 안암병원 영상의학과) ;
  • 신귀순 (동남보건대학 방사선과)
  • Published : 2009.12.31

Abstract

The purpose of this study was to determine the dose distribution and image quality according to slice thickness and BC(beam collimation) in the gantry aperture. CT scans were performed with a 64-slice MDCT(Brilliance 64, Philips, Cleveland, USA) scanner. To determine the dose distribution according to BC, a ionization chamber was placed at isocenter and 5, 10, 15, 20, 25 and 30 cm positions from the isocenter in the 12, 3, 6 and 9 o'clock directions. The dose distribution for phantom scan was also measured using CT head and body dose phantom with five holes at the center of the phantom and the positions of the 12, 3, 6 and 9 o'clock directions. The image noise measurement for different BCs was performed using an AAPM CT phantom. Water-filled block of the phantom was moved by 5 cm or 10 cm to the 12 o'clock direction, and the image noise was measured at the center of the phantom, and the points of 12, 3, 6 and 9 o'clock direction respectively. Some points were placed beyond the scan field of view (SFOV), so that measurement was not possible at that points. The results are as follows: The CTDIw showed a larger decrease as the source goes farther from the iso-center or the BC became wider. The CTDIw depends on the BC width more than the number of the channel of a detector array. The value of CTDIW decreased with increasing BC, but the value decreased 16.6~31.9% in the head phantom scan in air scan and 51.0~64.5% in the body phantom scan. The value of the noise was 3.9~5.9 in the head and 5.3~7.4 in the body except for BC of $2{\times}0.5\;mm$, regardless of the degree of deviation from the iso-center. When a subject was located within the SFOV, the position did not significantly affect image quality even if the subject was out of the center.

슬라이스 두께(slice thickness)와 선속시준(beam collimation, BC)의 변화에 따른 CT gantry aperture 내의 선량 분포와 영상의 질을 알아보고자 하였다. CT장치로는 64-slice MDCT 스캐너(Brilliance 64, Philips, Cleveland, USA)를 사용하였다. 피사체가 없는 경우(air scan)의 선량측정을 위해 CT용 전리함을 gantry aperture내의 회전중심점(isocenter)과 12시, 3시, 6시, 9시 방향에서 회전중심점으로부터 5 cm 간격으로 30 cm까지 BC를 변화시키면서 각각 측정 하였다. 또한 5개의 구멍(팬텀의 중심과 12시, 3시, 6시, 9시 방향)으로 구성된 CT head and body dose phantom을 gantry aperture 내에 위치시키고 각 지점에서 선량을 측정하였다. Gantry aperture 내 피사체의 위치변화에 대한 영상의 노이즈를 비교하기 위해서 AAPM CT용 팬텀의 물통을 회전중심점과 12시 방향으로 5 cm와 10 cm 이동시킨 후 BC를 변화시키면서 스캔한 후 팬텀의 중심과 12시, 3시, 6시, 9시 방향의 지점에서 노이즈를 측정하였다. 이 중에서 몇 군데의 위치는 영상 영역에서 벗어나서 측정 할 수가 없었다. 이때 노이즈 측정을 위해서 영상재구성의 슬라이스 두께는 5 mm로 하였다. 측정한 결과 다음과 같은 결론을 얻었다: 첫째, CTDIw는 회전중심점으로부터 멀어질수록, BC가 넓어질수록 감소하였다. 둘째, BC의 넓이가 비슷한 경우의 CTDIw는 거의 유사한 값을 보였다. 즉, CTDIw는 검출기 배열의 수나 화소의 크기 보다는 전체적인 BC의 넓이에 의존하고 있음을 알 수 있었다. 셋째, air scan과 phantom scan 경우 모두에서 CTDIw는 BC가 증가될수록 감소하였다. 그러나 air scan의 경우보다 head phantom scan 시 약 30%, body phantom scan 시 약 52% 정도 CTDIw의 값이 감소하였다. 넷째, BC와 팬텀의 위치 변화에 따른 노이즈 값은 $2{\times}0.5\;mm$의 BC을 제외하고는 head phantom scan한 경우 3.9~5.9, body phantom scan한 경우 5.3~7.4로 나타나, BC와 팬텀의 위치변화에 따라서 큰 차이가 없었다. 따라서 피사체의 위치가 gantry aperture 내 SFOV(scan field of view)에 포함될 경우 회전중심점에 정확하게 위치시키지 않아도 영상의 질에는 많은 영향을 미치지 않는다는 것을 알 수 있었다.

Keywords

References

  1. A. Kaul, B. Bauer, J. Bernhardt, D. Nosske, R. Veit : Effective doses to members of the public from the diagnostic application of ionizing radiation in Germany. Eur Radiol, 7, 1127-1132, 1997 https://doi.org/10.1007/s003300050267
  2. PC. Shrimpton, S. Edyvean : CT scanner dosimetry. Br J Radiol, 71, 1-3, 1998 https://doi.org/10.1259/bjr.71.841.9534691
  3. International Commission on Radiological Protection : Recommendations of the International Commission on Radiological Protection. Oxford, United Kingdom, Pergamon Press, ICRP Publication 60, 1991
  4. JR. Mayo, TE. Hartman, KS Lee, SL. Primack, S. Vedal, NL. Muller : CT of the chest : minimal tube current required for good image quality with the least radiation dose, AJR, Am. J. Roentgenol, 164, 603-607, 1995 https://doi.org/10.2214/ajr.164.3.7863879
  5. SE. Kearney, P. Jones, K. Meakin, CJ. Garvey : CT scanning of the paranasal sinuses-the effect of reducing mAs, Br. J. Radiol, 70, 1071-1074, 1997 https://doi.org/10.1259/bjr.70.838.9404216
  6. CH. McCollough : Optimization of multidetector array CT acquisition parameters for CT colonography, Abdom. Imaging, 27, 253-259, 2002 https://doi.org/10.1007/s00261-001-0166-9
  7. OW. Linton, FA. Mettler, Jr. : National conference on dose reduction in CT, with an emphasis on pediatric patients. AJR Am J Roentgenol, 181, 321-329, 2003 https://doi.org/10.2214/ajr.181.2.1810321
  8. SJ. Yates, LC. Pike, KE. Goldstone : Effect of multislice scanners on patient dose from routine CT examinations in East Anglia. Br J Radiol, 77, 472-478, 2004 https://doi.org/10.1259/bjr/21927258
  9. G. Brix, HD. Nagel, G. Stamm et al. : Radiation exposure in multi-slice versus single-slice spiral CT : results of a nationwide survey. Eur Radiol, 13, 1979-1991, 2003 https://doi.org/10.1007/s00330-003-1883-y
  10. AN. Primak, CH. McCollough, MR. Bruesewitz, J. Zhang, JG. Fletcher : Relationship between Noise, Dose, and Pitch in Cardiac Multi-Detector Row CT. Radigraphics, 26(6), 1785-1794, 2006 https://doi.org/10.1148/rg.266065063
  11. SJ. Anthony, TB. Gary, GG. Robert : Specification, Acceptance testing and quality control of diagnostic X-ray imaging equipment. Medical physics monograph No. 20, 899-936, 1991
  12. JE. Gray : Radiological protection issue in mammography and computed tomography proc. conf. (Vienna : IAEA), 183-200, 2001
  13. PK Cho, BK Seo, TK Choi et al. : The development of a diagnostic reference level on patient dose for CT examination in Korea. Radiation Protection Dosimetry, 129(4), 463-468, 2008 https://doi.org/10.1093/rpd/ncm463
  14. LM. Roberto, V. Peter, Raymond Mury, Paul P. Schneeberger : Radiation exposure of patients who undergo CT of the trunk, Radiology. 195(2), 557-562, 1995. https://doi.org/10.1148/radiology.195.2.7724783
  15. American Association of Physicists in Medicine Report no. 31 : Standardized methods for measuring diagnostic X-ray exposure, Available at www.aapm.org/pubs/reports, 1991
  16. American Association of Physicists in Medicine Report no 39, Specification and acceptance testing of computed tomography scanners, Available at www.aapm.org/pubs/reports, 1993
  17. European Guidelines on Quality Criteria for Computed Tomography(EUR 16262 EN, May 1999). Available at www.drs.dk/guidelines/ct/quality/index.htm, 2002
  18. LN. Rothenberg, KS. Pentlow : CT dosimetry and radiation safety. In : Goldman L. W., Fowlkes J. B., eds. Syllubus, a categorical course in diagnostic radiology physics-CT and US cross-sectional imaging. Oak Brook, Ill, Radiological Society of North America, 171-188, 2000
  19. CM. McCollough, FE. Zink : Performance evaluation of CT systems. In : Goldman LW, Fowlkes JB, eds. Syllubus : a categorical course in diagnostic radiology physics-CT and US cross-sectional imaging. Oak Brook, Ill, Radiological Society of North America, 189-207, 2000
  20. HD. Nagel, ed : Radiation exposure in computed tomography. 2nd ed. Hamburg, Germany, COCIR, Available at cocir@zvei.org, 2000
  21. F. Michale, McNitt-Gray : AAPM/RSNA Physics Tutorial for Residents, Topics in CT, Radiographics, 22, 1541-1553, 2002 https://doi.org/10.1148/rg.226025128