DOI QR코드

DOI QR Code

MONTE-CARLO SIMULATION OF THE DUST SCATTERING

먼지 산란의 몬테카를로 시뮬레이션

  • Published : 2009.12.31

Abstract

We present a Monte-Carlo simulation code, which solves the problem of dust-scattering in interstellar dust clouds with arbitrary light source distribution and dust density structure, and calculate the surface brightness distribution. The method is very flexible and can be applied to radiative transfer problems occurring not only in a single dust cloud, but also in extragalactic dust environment. We compare, for performance test, the result of Monte-Carlo simulation with the well-known analytic approximation for a spherically symmetric homogeneous cloud. We find that the Code approximation gives a very accurate result.

이 연구에서는 임의의 밀도 분포를 갖는 성간 먼지 구름에 의해 산란되는 산란광을 분석할 수 있는 몬테카를로 시뮬레이션 코드를 개발하였다. 개발된 코드의 신뢰성을 확보하기 위해 구 대칭의 성간먼지 구름의 중심에 별이 있고, 별빛이 얼마만큼 산란되어 나오는 지 계산하여 Code (1973)의 결과와 비교하였으며, Code의 근사식과 매우 잘 일치하는 결과를 주는 것을 확인하였다. 이 코드는 우리 은하뿐만 아니라 외부은하의 경우에도 손 쉽게 확장이 가능하다. 개발된 코드는 과학위성 1호로 관측된 원자외선 연속복사광의 분석에 적용하여 성간먼지 구름의 특성과 우리 은하의 복사장의 분포를 연구하는 데 사용하고자 한다.

Keywords

References

  1. 박찬, 홍승수,1999, 비등방 산란 매질에서의 복사전달 문제의 몬테카를로 해법, 천문학논총, 14,23
  2. Code, A. D., 1973, Radiative Transfer in Circumstellar Dust Clouds, in Proc. of IAU Symposium #52, Interstellar Dust and Related Topics (Dordrecht: Reidel) ed. by J. M. Greenberg, & H. C. van de Hulst, p.505
  3. Draine, B. T., 2003, Scattering by Interstellar Dust Grains. I. Optical and Ultraviolet, ApJ, 598, 1017 https://doi.org/10.1086/379118
  4. Flannery, B. P., Roberge, W., & Rybicki, G. B., 1980, The Penetration of Diffuse Ultraviolet Radiation into Interstellar Clouds, ApJ, 236, 598 https://doi.org/10.1086/157778
  5. Henyey, L. G. & Greenstein, J. L., 1941, Diffuse Radiation in the Galaxy, ApJ, 93, 70 https://doi.org/10.1086/144246
  6. Lee, D.-H., Seon, K.-I., Min, K. W., Park, Y. S., Yuk, I. S., Edelstein J.,Korpela. J. E., Sankrit, R., Park, J. S., & Ryu, K.-S., 2008, Far- Ultraviolet Observations of the Ophiuchus Region with SPEAR, ApJ, 686, 1155 https://doi.org/10.1086/591778
  7. Pozdnyakov, L. A., Sobol, I. M, & Syunyaev, R. A., 1983, Comptonization and the Shaping of X-ray Source Spectra: Monte Carlo Calculations, Soviet Scientific Reviews, Section E: Astrophysics and Space Physics Reviews, 2, 189
  8. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P., 1992, Numerical Recipes in Fortran: The Art of Scientific Computing, 2nd ed, (Cambridge: Cambridge University Press)
  9. Roberge, W. G., 1983, The Spherical Harmonics Solution for the Radiation Field in Plane-parallel Clouds with Embedded Sources, ApJ, 275, 292 https://doi.org/10.1086/161533
  10. Seon, K.-I., 2006, Monte Carlo Modeling of Compton- Scattering Angles in a Mildly Relativistic Plasma, PASJ, 58, 439 https://doi.org/10.1093/pasj/58.2.439
  11. Seon, K.-I., 2009, Can the Lyman Contninuum leaked out of H II regions explain Diffuse Ionized Gas?, ApJ, 703, 1159 https://doi.org/10.1088/0004-637X/703/1/1159
  12. Witt, A. N., 1977, Multiple Scattering in Reflection Nebulae. I. A Monte Carlo Approach, ApJS, 35,1 https://doi.org/10.1086/190463
  13. Witt, A. N., Schild, R. E., & Kraiman, J. B., 1984, Photometric Study of NGC 2023 in the 2300 ${^{\circ}}$A to 10000 ${^{\circ}}$A, Region: Confirmation of a Near- IR Emission Process in Reflection Nebulae, ApJ,281, 708 https://doi.org/10.1086/162148
  14. Yusef-Zadeh, F., Morris, M., & White, R. L., 1984, Bipolar Reflection Nebulae: Monte Carlo Simulations, ApJ, 278, 186 https://doi.org/10.1086/161780