DOI QR코드

DOI QR Code

Identification of a Genetic Locus Related to Antivirus Production in Pseudomonas fluorescence strain Gpf01 Against Cucumber mosaic virus

  • Cho, Sae-Youll (Department of Bio-resource of Technology, Division of Applied Biology, College of Agriculture and Life Science, Kangwon National University) ;
  • Lee, Seon-Hwa (Department of Bio-resource of Technology, Division of Applied Biology, College of Agriculture and Life Science, Kangwon National University) ;
  • Park, Su-Jin (Life Science Institute, University of Michigan) ;
  • Choi, Kyu-Up (Department of Bio-resource of Technology, Division of Applied Biology, College of Agriculture and Life Science, Kangwon National University) ;
  • Cho, Jun-Mo (Department of Bio-resource of Technology, Division of Applied Biology, College of Agriculture and Life Science, Kangwon National University) ;
  • Hur, Jang-Hyun (Division of Biological Environment, College of Agriculture and Life Science, Kangwon National University) ;
  • Shrestha, Anupama (Department of Bio-resource of Technology, Division of Applied Biology, College of Agriculture and Life Science, Kangwon National University) ;
  • Lim, Chun-Keun (Department of Bio-resource of Technology, Division of Applied Biology, College of Agriculture and Life Science, Kangwon National University)
  • Published : 2009.03.31

Abstract

Pseudomonas fluorescens strain Gpf01, isolated from ginseng rhizosphere showed antiviral activity against Cucumber mosaic virus, when tested in a local host of CMV, Chenopodium amaranticolor. Transposon mutant library of Gpf01 was prepared using pGS9::Tn5 and the mutant Gpf01-RS19 was found to loose antiviral production. We developed primers from the flanking region of Tn5 and found a cosmid clone pAV1123, harboring 1.2 kb antiviral compound producing (avcf01) locus. When a sub-clone pPH9, which carried 9.3 kb region of pAV1123, was introduced into antivirus deficient P. fluorescens wild type strain B16, it exhibited antiviral activity. Using Tn3-gus mutagenesis and complementation analysis, it was found that the genes related to antiviral activity production resided in a 9.3 kb HindIII-HindIII fragment of pAV1123, indicating that the plasmid carries an essential genes promoting antiviral activity.

Keywords

References

  1. Bonas, U., Stall, R. E. and Staskawicz, B. J. 1989. Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campesfris pv. vesicatoria. Mol. Gen. Genet. 218:127-136 https://doi.org/10.1007/BF00330575
  2. Defago, G and Haas, D. 1990. Pseudomonads as antagonists of soil borne plant pathogens: modes of action and genetic analysis. Soil Biochem. 6:249-291 https://doi.org/10.1016/0038-0717(74)90059-5
  3. Elisaveta, S. and Violeta, S. 2000. Tomato lines segregation for resistance to cucumber mosaic virus. Acta Physiologiae Plantarum. 22:353-355 https://doi.org/10.1007/s11738-000-0053-y
  4. Franchetti, P. and Grifantini, M. 1999. Nucleoside and non-nucleoside IMP dehydrogenase inhibitors as antitumor and antiviral agents. Curr. Med. Chem. 6:599-614
  5. Gooding, G V 1991. Diseases caused by virus. In: Shew, H. D. and Lucas, G B. Compendium of Tobacco Diseases, APS Press, Minnesota. 41 pp
  6. Hosain, A. K. M. and Alexander, M. 1984. Enhancing soybean rhizosphere colonization by Rhizobium japonicum. Appl. Environ. Microbiol. 48:468-472
  7. Ipper, N. S., Kim, J. E., Koo, J. H., Hur, J. H. and Lim, C. K. 2005. Inhibitory effects of a Korean strain Gpf01 identified as Pseudomonas jluorescence on cucumber mosaic virus. Plant Pathol. J. 21 :262-269 https://doi.org/10.5423/PPJ.2005.21.3.262
  8. Ipper, N. S., Lee, S. H., Suk, J. K., Anupama, S., Seo, D. U., Park, D. H., Cho, J. M., D. S., Park, Hur, 1. H. and Lim, C. K. 2006. Isolation and evaluation of an antiviral producing Serratia spp. Strain GsmOl against cucumber mosaic virus in Korea. Pest. Sci. J 10:344-350
  9. Kandan, A., Commare, R., Nandakumar, R., Ramlaii, M., Raguchander, T. and Samiyappan, R. 2002. Induction of phenylpropanoid metabolism by Pseudomonas jluorescens against tomato spotted wilt virus in tomato. Folia. Microbiol. 47:121-129 https://doi.org/10.1007/BF02817669
  10. Keane, P. J., Kerr, A. and New, P. B. 1970. Crown gall of stone fruit. II. Identification and nomenclature of Agribacterium isolates. Aust. J Bioi. Sci. 23:85-595
  11. Keel, C., Schnider, U., Maurhofer, M., Vousard, C., Laville, J., Burger, U., Wirthner, P., Hass, D. and Defago, G 1992. Suppression of root disease by Pseudomonas jluorescens CHAO: Importance of the bacterial secondary metabolite 2,4-diacetyl phloroglucinol. Mol. Plant-Micobe Infract. 5:4-13 https://doi.org/10.1094/MPMI-5-004
  12. Kim, J. W., Kim, J. E., Park, B. K., Choi, O. H., Park, C. S. and Hwang, I. G 2003. Identification of genes for biosynthesis of antibacterial compound from Pseudomonas jluorescens B 16, and its activity against Ralstonia solanacearum. J Microbiol. Biotechnol. 13:292-300
  13. Kim, S. K., Hwang, E. I., O, J. H., Kim, K. S., Ryu, M. H. and Yeo, W. H. 2004. Inhibitory effects of Acinetobacter sp. KTB3 in infection of tobacco mosaic virus in tobacco plants. Plant Pathol. J. 20:293-296 https://doi.org/10.5423/PPJ.2004.20.4.293
  14. Klement, Z., Kiraly, J. and Pozsar, I. 1996. Suppression of virus multiplication and local lesion production in tobacco following inoculation with a saprophytic bacterium. Acta pjytopathol. Acad. Sci. Hung. 1: 11-18
  15. Kubo, S., Ikeda, T., Imaizumi, S., Takanami, Y. and Mikami, Y. 1990. A potent plant virus inhibitor found in Mirablis jalapa L. Ann. Phytopath. Soc. Japan. 56:481-487 https://doi.org/10.3186/jjphytopath.56.481
  16. Kudo, N., Allen, M. D., Koike, H., Katsuya, Y., Suzuki, M. 2001. Crystallization and secondary-structure determination of a protein of the Lrp/AsnC family from a hyperthermophilic archaeon. Acta Crystallogr D. BioI Crystallogr. 57:469-471 https://doi.org/10.1107/S0907444900020369
  17. Lampis, G, Deidda, D., Maullu, C., Petruzzelli, S. and Pompei, R. 1996. Karalicin, a new biologically active compound from Pseudomonasjluorescenslputida. J Antibiotics. 49:260-266 https://doi.org/10.7164/antibiotics.49.260
  18. Lenci, I., Piccolo, P., Francioso, S., Di Paolo, D., Galante, A., Angelico, M. 2008. Recurrent myocardial ischaemia during combination antiviral therapy in a patient with chronic hepatitis C and normal aminotransferase levels. Dig. Liver Dis. 40:785-90 https://doi.org/10.1016/j.dld.2007.03.010
  19. Maurhofer, M., Hase, C., Meuwly, P., Metraux, J. P. and Defago, G 1994. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas jluorescens strain CHAO: influence of the gacA gene and of pyoverdine production. Phytopathol. 84: 139-146 https://doi.org/10.1094/Phyto-84-139
  20. Maurhofer, M., Reimmann, c., Schmidli-Sacherer, P., Heeb, S., Haas, D. and Dcfago, G 1998. Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathol. 88:678-684 https://doi.org/10.1094/PHYTO.1998.88.7.678
  21. Nowak-Thompson, B., Gould, S. J., Karus, J. and Lopper, J. E. 1994. Production of 2,4-dieetylphloroglucinol by biocontTol agent Pseudomonas jluorescens Pf-5. Can. J Microbial. 40:1064-1066 https://doi.org/10.1139/m94-168
  22. O'Sullivan, D. J. and O'Gara, F. 1992. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbial. Rev. 56:662-676
  23. Palleroni, N. J., Kunisawa, R., Contopoulou, R. and Doudoroff, M. 1973. Nucleic acid homologies in genus Pseudomonas. Int. J Syst. Bacteriol.23:333-339 https://doi.org/10.1099/00207713-23-4-333
  24. Raupach, G S., John, L. L., Murphy, E, Tuzun, S. and Kloeppcr, J. W. 1996. Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growth promoting rhizobacteria. Plant Dis. 80:891-894 https://doi.org/10.1094/PD-80-0891
  25. Rosales, A. M., Thomashow, L., Cook, R. J. and New, T. W. 1995. Isolation and identification of antifungal metabolites produced by rice-associated antagonistic Pseudomonas sp. Phytopathol. 85: 1028-1032 https://doi.org/10.1094/Phyto-85-1028
  26. Ryu., J. S., Lee. S. D., Lee, Y. H., Lee, S. T., Kim, D. K., Cho, S. J, Park, S. R., Bae, D. w., Park, K. H. and Yun, H. D. 2000. Screening and identification ofan antifungal Pseudomonas sp. that suppresses balloon flower root rot caused by Rhusoctonia solani. J Microbial. Biotechnol. 10:435-440
  27. Sambrook J. and Russel, D. W. 2001. Molecular Cloning: A Laboratory Manual, 3ed ed., Cold Spring Harbor Press, Cold Spring Harbor, NY
  28. Thomashaw, L. S. and Wellwe, D. M. 1988. Role of a phenazine antibiotic from Pseudomonas jluorescens in biological control of Gaeumannomyces graminis var. tritiei. J Bacterial. 170:3499-3508 https://doi.org/10.1146/annurev.py.26.090188.002115
  29. Zehender, G w., Yao, c., Murphy, J. E, Sikora, E. R. and Kleoepper, J. W. 2000. Induction of resistance in tomato against cucumber mosaic cucumovirus by plant growth-promoting rhizohacteria. Biocontrol. 45: 127-137 https://doi.org/10.1023/A:1009923702103