EINSTEIN HALF LIGHTLIKE SUBMANIFOLDS OF CODIMENSION 2

  • Jin, Dae-Ho (Department of Mathematics, Dongguk University)
  • Published : 2009.02.28

Abstract

In this paper we study the geometry of Einstein half light like submanifolds M of a Lorentz manifold ($\bar{M}$(c), $\bar{g}$) of constant curvature c, equipped with an integrable screen distribution on M such that the induced connection ${\nabla}$ is a metric connection and the operator $A_u$ is a screen shape operator.

Keywords

References

  1. Chen, B.Y. : Geometry of Submanifolds. Marcel Dekker, New York, 1973.
  2. Duggal, K.L. & Bejancu, A. : Lightlike Submanifolds of codimension 2. Math. J. Toyama Univ. 15 (1992), 59-82.
  3. Duggal, K.L. & Bejancu, A. : Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Kluwer Acad. Publishers, Dordrecht, 1996.
  4. Duggal, K.L. & Jin, D.H. : Half-Lightlike Submanifolds of Codimension 2. Math. J. Toyama Univ. 22 (1999), 121-161.
  5. Duggal, K.L. & Jin, D.H. : Totally umbilical lightlike submanifolds. Kodai Math. J. 26 (2003), 49-68. https://doi.org/10.2996/kmj/1050496648
  6. Duggal, K.L. & Jin, D.H. :Null curves and hypersurfaces of semi-Riemannian manifolds. World Scientific, 2007.
  7. Jin, D.H. : Totally umbilical lightlike hypersurfaces in Lorentz Manifolds. J. of Dongguk Univ. 18 (1999), 203-212.
  8. Jin, D.H. : Geometry of coisotropic submanifolds. J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 8 (2001), no. 1, 33-46.
  9. Kupeli, D.N. : Singular Semi-Riemannian Geometry. Kluwer Academic Publishers, Dordrecht, 1996.
  10. O'Neill, B. : Semi-Riemannian Geometry with Applications to Relativity. Academic Press, 1983.