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Abstract

In the model selection problem, the main objective is to choose the true model from a manageable set of
candidate models. An information criterion gauges the validity of a statistical model and judges the balance
between goodness-of-fit and parsimony; “how well observed values can approximate to the true values” and
“how much information can be explained by the lower dimensional model”. In this study, we introduce some
information criteria modified from the Akaike Information Criterion(AIC) and the Bayesian Information
Criterion(BIC). The information criteria considered in this study are compared via simulation studies and

real application.
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1. Introduction

In the model selection problem confronted by statisticians, the main objective is to choose the true
model from a manageable set of competing models. Since statisticians devoted their attention to
this problem, they have addressed several approaches.

One way is to use an Information Criterion(IC) or model selection criterion for choosing an ap-
propriate model. It gauges the validity of a statistical model and judges the balance between
goodness-of-fit and parsimony; “how well observed values can approximate to the true values” and
“how much information can be explained by the lower dimensional model”. In general, an informa-
tion criterion consists of a log likelihood function(L) and a complexity penalty parameter()) given
by, for A € R,

IC=-2L+ X

During the period(1960s through 2000s), a number of information criteria for the model selection

have been proposed. The first information criterion accepted widespread is the Akaike Information
Criterion(AIC) (Akaike, 1973) defined by

AIC = —2L + 2p, (1.1)
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where p is the number of parameters considered in a model. Schwarz (1978) contrived the Bayesian
Information Criterion(BIC) defined by

BIC = —2L + plog(n). (1.2)

In the case that the true model has an infinite dimension, the AIC efficiently selects an approximat-
ing model with finite dimension. However, when the true model has a finite dimension, the AIC
does not select an approximating model consistently. In contrast, in the same situation, the BIC is
a consistent estimator but tends to select an approximating model that is too simple due to heavy
complexity penalty.

To overcome the disadvantages of the AIC and the BIC, many researchers have proposed new
information criteria satisfying the consistency and asymptotic efficiency. The purpose of this paper
is to introduce some modified versions of the AIC and the BIC. This paper is organized as follows.
In Section 2, we introduce various improved versions of information criteria. Sections 3 and 4 focus
on the comparison of the criteria in linear regression models from simulation studies and real data
analysis. We make a conclusion in Section 5.

2. Modified Versions of the AIC and the BIC
Let us consider the linear regression model:
y=XB+e, @1

where y is an n X 1 column vector, X is an n X p matrix, 8 is a p X 1 parameter vector, and € is an
n x 1 random vector from the multivariate normal distribution, N,(0,21), where I is an identity
matrix with order n. Under the model (2.1), the main objective for model selection is to choose an
approximating model, M, denoted by '

y:Xqﬂa +€7

where the dimension index set, o € &, a class of all possible index subsets of {1,...,p}, X, and
B, are the matrix and the parameter vector, based on M., respectively. We define the number of
elements of « as py, which is the dimension of M,.

Now we present some modified versions of the AIC and the BIC. To overcome the inconsistency of
the AIC, Hurvich and Tsai (1989) proposed the corrected AIC(AICC) defined by

2(po + 1)}{(pa + 2)

AICC, = AIC, +
n—Pa— 2

for linear and non-linear regression and autoregressive models. They showed that the AICC is
appropriate for choosing the true model as p/n increases, while the ABIC(Akaike’s Bayesian In-
formation Criterion; Akaike, 1980) performs the best as p/n decreases, where the ABIC is defined
by

o 1 (5,
ABIC, = nlog5Z + (pa — n)log (1 - -z;—o‘-) + pa logn + pa log{; (5% - 1) } ,
where 3§ is a sample variance of dependent variable, and 62 and 5° are mean error variance

estimators based on a candidate model, M, and the full model, respectively.
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Wu and Sepulveda (1998) proposed the Weighted-Average Information Criterion(WAIC) modified
from the AICC and the ABIC. The WAIC is defined as

A B o A+ B?
WAIC, = —— o« + ——=ABIC, = ot T
A+BAICC +A+B C nlog oy + i1 B
where A = 2n(pa+1)/(n—pa—2) and B = (po—n) log(l—pa /n)+pa log n+pa log{(G2/5°—1)/pa}.
They showed that, for small sample sizes, the WAIC performs as well as the AICC and for large
sample sizes, performs as well as the BIC.

By using the symmetric measure different from asymmetric Kullback-Leibler information {Kullback
and Liebler, 1951), Cavanaugh (1999) proposed a new information criterion providing an asymp-
totically unbiased estimator of asymmetric measure between the true model and an approximating
model. Kullbacks Information Criterion(KIC) is expressed as

RSSa
82 + 3pa b

KIC, =

where RSS denotes residual sum of squares.

Rahman and King (1997) compared some popular criteria in terms of the probability of correct
selection of the true model among a lot of candidate models. Rahman and King (1999) showed
that, when the sample size is small and the true model has a finite dimension, the BIC has better
performance than the AIC and the AIC performs better than Theil’s R? (Theil, 1961), but the R?
has better performance than the AIC and the AIC performs better than the BIC when the true
model has an infinite dimension. Investigating this interesting pattern, they proposed the Joint
Information Criterion(JIC) defined by

JIC, = R;EO‘ — i {pa —logn — nlog (1 — %)}

with a simple average of the BIC penalty and the implicit R* penalty. They showed that the JIC
is strongly consistent and usually selects more parsimonious models than the AIC does, but less
parsimonious models than the BIC does.

Wei (1992) proposed a new information criterion, Fisher Information Criterion(FIC) defined by

FIC, = 252 + log {det (Z xix;> }

=1

based on the Fisher information matrix. This criterion replaces the original complexity penalty
proportional to the dimension of an approximating model with a new one proportional to the
Fisher information contained in an approximating model.

Foster and George (1994) proposed the Risk Inflation Criterion(RIC) defined by

RIC, = E/S—E—a + 2pq logp
c

when n — p is reasonably large. The main idea behind this criterion is to use the risk function in
order to eliminate the meaningless variables correctly since good performance with respect to Ba
has small risk inflation. In addition, George and Foster (2000) proposed the Modified Risk Inflation
Criterion(MRIC) derived from the fact that the expected size of the ky, largest squared t-statistic
is approximately 2log(p/pk).
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Tibshirani and Knight (1999) proposed a new information criterion called the Covariance Inflation
Criterion(CIC}), a nonparametric model selection method based on adjusting the bias of in-sample
estimates. The CIC is defined by

RSS. 2 .. 3
CIC, = = + gg ; Covyg (yz ,Xa,iﬂa) s

where B; is the least square estimator based on permutation data, (X4, y™) under the model, M,
and Covp is the covariance under the permutation distribution of X and y. The main idea of the
CIC is that the harder we fit the data, the more Xfia affects its own prediction, and hence the
greater prediction error.

3. Simulation Studies

In this simulation study, we compare various information criteria that we have presented in the main
paper in terms of their performance for the model selection. We fix the number of independent
variables to 4 and the sample size to n = 100. The matrix X is the 100 x 5 matrix of which columns
consist of the first column vector with all 1’s and the other 4 independent variable column vectors.
These independent variables are generated from multivariate normal distribution with mean 10 and
variance 1. That is,

xi ~ Nioo(pyg, 1),

where, for i = 1,...,4, x; is ( + 1)* column vector in X and Mo is a column vector with all
10’s. We also generate the errors, € ~ Nigp(0,I). We consider three cases of true regression
coeflicient parameter vectors: 8 = (1,0,0,0.2,0)', (1,0,0,0.2,0.3)" and (1,0.4,0,0.2,0.3)". Here, we
consider all possible combinations of variables as candidate models where the intercept is included
in every candidate model. So the number of all candidate models, {M.}, is 2(P-1) . 1 = 15 and
the dimension index set, @, corresponding to M, is a1 = {1,5}, a2 = {1,4}, as = {1,4,5}, au =
{1,3}, as = {1,3,5}, as = {1,3,4}, a7 = {1,3,4,5}, as = {1,2}, ag = {1,2,5}, a10 = {1,2,4},
an = {1,2,4,5}, a1z = {1,2,3}, auz = {1,2,3,5}, aua = {1,2,3,4} and 15 = {1,2,3,4,5}. We
set the number of replication to T" = 1000. Most of the information criteria which we presented in
Section 2 are easy to compute. In order to compute the GIC, we consider the preassigned level of
significance, § = 0.05. We fix the number of permutation to 10 for obtaining the CIC.

In order to compare the information criteria used in this simulation study, we need the standard
measures. We consider the true model error(ME) and empirical probabilities of correct selection,
over-selection, under-selection and biased selection as the standard measures. The ME is defined
by

2

ME = [[Xaq 8., ~ Xafs|| (3.1)

where ag is is the dimension index set of the true model, My, and @ is the dimension index set of
the estimated model, Ma, by the particular information criterion. The empirical probabilities are
defined by

T
> " 1@ = o), (3.2)
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Table 3.1. True model error(ME) and empirical probability of sefecting models under 3 = (1,0, 0,0.2,0)’

Incorrectly selected models

ME Over Under Biased Correct

Qo Qs Qe
AIC 042 335 000 148 517 10(.096)  3(.092)  6(.077)
BIC 036 064 000 199 737 4(.075)  8(.063)  1(.061)
AICC 038 160 .000 182 658 4(.069)  1(.056)  8(.054)
ABIC 038 179 000 167 654 A(061)  1(.054)  6(.052)
WAIC 038  .159 000 178 663 A(068)  1(.055)  8(.052)
KIC 038  .180 000 177 643 4(.065)  10(.058)  1(.054)
JIC 039 .199 .000 173 628 10(.065)  4(.063)  3(.058)
FIC 037 .060 000 222 718 4(.080)  1(.071)  8(.070)
RIC 038 .148 000 186 666 4(.069)  1(.059)  8(.056)
MRIC .034  .013 000 209 778 4(.078)  8(.066)  1(.065)
cIC 043 507 .000 140 353 10(.117)  3(.115)  6(.110)
GIC 034  .007 000 210 783 4(.078)  8(.067)  1(.065)
1 &
Pr(& C ao) = T ; &, C ag, 04 # ao), (3.3)
1 T
Pr(ad D ag) = T ; &y D ag, a4 # ao), (3.4)
s
Pr(a # ag) = T-Zl(at ¢ ao, @ 2 ao), (3.5)

where I(-) is an indicator function. The Equations (3.2) through (3.5) are regarded as the proba-
bilities of correct selection, under selection, over selection and biased selection, respectively. Now
we interpret the simulation results based on the linear regression model. Through the simulation
studies, we focus on the true model error(ME) (3.1) of an approximating model selected by infor-
mation criteria, and the probabilities of selecting the true model (3.2) and over-fitted models (3.4).
Tables 3.1 through 3.3 show the simulation results. @,, @, and &. mean the dimension index sets
of the incorrectly estimated models including over-dimensional models, under-dimensional models
and biased models, where &, is the set with the highest empirical probability, @ is the second and
G, is the third. In addition, the probabilities of selecting the incorrect models with these sets are
in the parentheses.

Table 3.1 shows the simulation results for 3 = (1,0,0,0.2,0)’. The MRIC and the GIC have the
smallest ME and the highest empirical probabilities of selecting the true model with ap = {1,4}.
However, the CIC has the lowest empirical probability of selecting a biased model although its
probability of selecting an over-dimensional model is the largest. The reason is that the models
with the first (.117) and third (.115) highest probabilities of selecting incorrect models are both
over-dimensional models, that is, models with a10 = {1,2,4} and with ag = {1,3,4}. The ABIC,
the AICC, the WAIC, the KIC and the RIC have the same ME and have very similar performance
in terms of the probability of selecting an over-dimensional model and the pattern of the incorrect
selections.

Tables 3.2 and 3.3 show the simulation results for 3 = (1,0,0,0.2,0.3)" and 8 = (1,0.4,0,0.2,0.3)’,
where the true dimension index sets are az = {1,4,5} and ay1 = {1,2,4,5}, respectively. The AIC
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Table 3.2. True model error(ME) and empirical probability of selecting models under 8 = (1, 0,0, 0.2, 0.3)’

Incorrectly selected models

ME Over Under Biased Correct — — —
Qg Qap Qe
AIC .047 .256 .153 .064 527 1(.140) 11(.124) 7(.109)
BIC .057 .040 499 .035 .426 1(.392) 2(.107) 7(.021)
AICC .050 .095 .310 .056 .539 1(.261) 7(.052) 2(.049)
ABIC  .051 .096 344 044 516 1(.292)  2(.052)  7(.047)
WAIC  .050  .093 327 052 528 1(.279)  7(.049)  2(.048)
KIC .049 117 275 .063 .545 1(.235) 7(.058) 11(.052)
JIC 049 136 254 .063 547 1(217)  7(.064)  11(.063)
FIC .058 .038 515 .035 412 1(.405) 2(.110) 7(.022)
RIC .051 091 .332 .056 521 1(.279) 2(.053) 7(.050)
MRIC .068 010 727 .015 .248 1(.557) 2(.170) 7(.006)
cic 048 383 113 111 393 11(.173)  7(.140)  1(.098)
GIC 072 002 799 015 184 1(.607)  2(.192)  5(.005)

Table 3.3. True model error(ME) and empirical probability of selecting models under 8 = (1, 0.4, 0, 0.2, 0.3)’

I 1 lected model
ME Over Under Biased Correct neorrectly selected models

273 Qp Qc
AlIC .054 132 192 .051 625 9(.153) 15(.132) 13(.036)
BIC 073  .020 510 032 438 9(.338)  10(.098) 8( 055)
AICC .062 .046 .361 .042 .551 9(.257) 10(.070) 15(.046)
ABIC 064  .034 403 037 526 9(.287)  10(.074)  15(.034)
WAIC 063  .037 386 040 537 9(.277)  10(.072)  15(.037)
KIC .060 .068 319 .042 571 9(.231) 15(.068) 10(.063)
JIC .059 .075 301 .044 .580 9(.219) 15(.075) 10(.060)
FIC 074 018 526 031 425 9(.350)  10(.096)  8(.059)
RIC .063 .039 373 .042 .546 9(.265) 10(.072) 15(.039)
MRIC .094  .005 676 015 304 9(.360)  8(.155) 10(.110)
cIc 057 245 173 082 500 15(.245)  9(.120)  13(.060)
GIC .08  .001 835 .009 155 9(.427)  8(.198)  10(.142)

has the smallest ME and the second lowest probability of selecting an under-dimensional model for
both of the cases. The AIC also has the second highest probability of selecting an over-dimensional
model. However, the BIC has the reverse result to the AIC. From these results, we can conclude that
the AIC tends to select an over-dimensional model, but the BIC tends to select an under-dimensional
model due to a heavy complexity penalty. The modified versions have almost the same ME even
though their empirical probabilities are slightly different. As can be seen, their probabilities of
selecting an over-dimensional model are less than the AIC’s, but larger than the BIC’s, and those of
selecting an under-dimensional model are less than the BIC’s, but larger than the AIC’s. Especially,
the ABIC, the AICC and the WAIC have an effect on decreasing the inconsistency of the AIC and
the KIC and the JIC are effective to treat inefficiency of the BIC.

In the simulation studies, we have discussed the performance of various information criteria. Since

the earliest information criteria was used in the model selection problem, a lot of adjusted criteria
have been motivated and proposed in order to overcome their disadvantages.
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Table 4.1. Variable selection with Boston Housing data

L P C R D N B R T C Z I A
S T R M S X L A X H N D G

AIC X X X X X X X X X X X

BIC X X X X X X X X X X

AICC X X X X X X X X X X X

ABIC X X X X X X X X X X

WAIC X X X X X X X X X X

KIC X X X X X X X X X X X

JIC X X X X X X X X X X X

FIC X X X X X X X X X X

RIC X X X X X X X X X X

MRIC X X X X X X X X X X

CIC X X X X X X X X X X X

GIC X X X X X X X X X

FWD X X X X X X X X X X X X

BWD X X X X X X X X X X X

STP X X X X X X X X X X X

Notes. LS: percentage lower status of the population; PT: pupil-teacher ratio by town; CR: per capita
crime rate by town; RM: average number of rooms per dwelling; DS: weighted distances to five Boston
employment centers; NX: nitric oxides concentration (parts per 10 million); BL: 1000 x (B —0.63)? where B
is the population of blacks by town; RA: index of accessibility to radial highways; TX: full-value property-
tax rate per $10,000; CH: Carles River dummy variable (1 bounds river; 0 otherwise); ZN: proportion
of residential land zoned for lots over 25,000 sq.ft.; ID: proportion of non-retail business acres per town;
AG: proportion of owner-occupied units built prior to 1940; FWD: Forward selection; BWD: Backward
elimination; STP: Stepwise selection

4. Real Application

We now represent a real data analysis using the Boston Housing data. This data contain 14
variables (including a dependent variable, median value of owner-occupied homes in $1000’s) that
describe the 506 census tracks in the Boston SMSA in 1970, excluding tracks with no housing
units (Belsley et al., 1980; Breiman et al., 1984). Since there are 13 independent variables, it is
impossible to consider all possible combinations of these variables, 213 _ 1, as candidate models.
So, we first set up the order of the 13 independent variables by Stepwise selection method before
doing variable selection by information criteria. Traditional variable selection methods(Forward
selection, Backward elimination and Stepwise selection) in the multiple linear regression model are
also considered.

Table 4.1 illustrates which variables among the 13 independent variables are selected by each of the
criteria. Here, “x” means that the corresponding variable is selected by an information criterion.
The AIC, the AICC, the KIC, the JIC and the CIC select the model with 11 variables except the
variables ID and AG, but the other criteria except the GIC select the model with 10 variables
except ZN, ID and AG. As mentioned above in Section 3, the JIC has an effect on treating the
over-fitting problem that the BIC usually has while the ABIC and the WAIC is effective to the
under-fitting problem of the AIC. In addition, Backward elimination and Stepwise selection choose
the model with 11 variables, but Forward selection chooses the model with 12 variables. From
Table 3.2 through Table 4.1, most of the criteria that select the model with 10 variables have the
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under-fitting probability at least 0.33 and most of the criteria choosing the model with 11 variables
have the under-fitting probability at most 0.36.

5. Conclusion

‘We have discussed a class of information criteria for model selection. In general, an approximating
model is selected by minimizing an information criterion, which consists of log-likelihood function
and complexity penalty parameter. Hence, the researchers have tried to select a model with the
greater information about observed data but the lower dimensional structure. Each criterion has the
specific complexity penalty, which leads to different performances in different situations. The results
from simulation study and real application show that most of the information criteria considered
in this paper are superior to the AIC and the BIC, but the AIC and the BIC still have advantage
due to the ease of computation.
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