DOI QR코드

DOI QR Code

Small Sample Asymptotic Distribution for the Sum of Product of Normal Variables with Application to FSK Communication

곱 정규확률변수의 합에 대한 소표본 점근분표와 FSK 통신에의 응용

  • Na, Jong-Hwa (Dept. of Information and Statistics, Chungbuk National University) ;
  • Kim, Jung-Mi (Dept. of Information and Statistics, Chungbuk National University)
  • 나종화 (충북대학교 정보통계학과) ;
  • 김정미 (충북대학교 정보통계학과)
  • Published : 2009.02.28

Abstract

In this paper we studied the effective approximations to the distribution of the sum of products of normal variables. Based on the saddlepoint approximations to the quadratic forms, the suggested approximations are very accurate and easy to use. Applications to the FSK (Frequency Shift Keying) communication are also considered.

본 논문에서는 정규확률변수의 곱과 그의 합으로 표현되는 통계량의 분포에 대한 효과적인 근사법을 다루었다. 이차 형식에 대한 안장점근사에 기초한 이 방법은 기존의 정규근사에 비해 매우 정확한 결과를 제공한다. 또한 이에 대한 응용으로 FSK 통신에서 발생하는 문제를 제시하고, 그 해결책으로 본 논문에서 제안한 안장점근사법을 사용하였다. 모의실험을 통해 제안된 근사법이 중심영역은 물론, 통신이론에서 주요 관심 영역인, 극단 꼬리부분의 확률 근사에도 매우 유용한 방법임을 확인하였다.

Keywords

References

  1. Aroian, L. A. (1947). The probability function of the product of two normally distributed variables, The Annals of Mathematical Statistics, 18, 265-271 https://doi.org/10.1214/aoms/1177730442
  2. Aroian, A. L., Taneja, V. S. and Cornwell, L. W. (1978). Mathematical forms of the distribution of the product of two normal variables, Communications in Statistics-Theory and Methods, 7, 165-172 https://doi.org/10.1080/03610927808827610
  3. Conradie. W. and Gupta. A. (1987). Quadratic forms in complex normal variates: Basic results, Statistica, 47,73-84
  4. Cornwell, L. W.. Aroian, L. A. and Taneja, V. S. (1978). Numerical evaluation of the distribution of the product of two normal variables, Journal of Statistical Computation and Simulation, 7, 123-131 https://doi.org/10.1080/00949657808810219
  5. Craig, C. C. (1936). On the frequency function of xy, Annals of Mathematical Statistics, 7, 1-15 https://doi.org/10.1214/aoms/1177732541
  6. Daniels. H. E. (1987). Tail probability approximations, International Statistical Review, 55, 37-48 https://doi.org/10.2307/1403269
  7. Jensen. J. L. (1992). The modified signed loglikelihood statistic and saddlepoint approximations, Biometrika, 79, 693-703 https://doi.org/10.1093/biomet/79.4.693
  8. Jensen, J. L. (1995). Saddlepoint Approximations, Oxford Statistical Science Series 16, Oxford, Clarendon Press
  9. Lugannani, R. and Rice. S. O. (1980). Saddlepoint approximation for the distribution of the sum of independent random variables, Advanced Applied Probability, 12, 475-490 https://doi.org/10.2307/1426607
  10. Na, J. H. and Kim. J. S. (2005). Saddlepoint approximations to the distribution function of non-homogeneous quadratic forms, The Korean Journal of Applied Statistics, 18, 183-196 https://doi.org/10.5351/KJAS.2005.18.1.183