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Abstract

A floating-strike lookback call option gives the holder the right to buy at the lowest price of the underlying
asset. Similarly, a floating-strike lookback put option gives the holder the right to sell at the highest price.
This paper will propose an outside floating-strike lookback call (or put) option that gives the holder the
right to buy (or sell) one underlying asset at some percentage of the lowest (or highest) price of the other
underlying asset. In addition, this paper will derive explicit pricing formulas for these outside floating-strike
lookback options. Sections 3 and 4 assume that the underlying assets pay no dividends. In contrast, Section
5 will derive explicit pricing formulas for these options when their underlying assets pay dividends continu-

ously at a rate proportional to their prices. Some numerical examples will be discussed.
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1. Introduction

Lookback options are path-dependent contingent claims whose payoffs depend on the maximum (or
minimum) of the underlying asset price over a certain period. A floating-strike lookback call (or
put) option gives the holder the right to buy (or sell) at the lowest (highest) price of the underlying
asset. Goldman et al. (1979) derived explicit pricing formulas for floating-strike lookback options
where the highest (or lowest) price of the underlying asset is attained during the whole life of the
options. Conze and Viswanathan (1991) derived explicit pricing formulas for partial floating-strike
lookback options that give the holder the right to buy (or sell) at some percentage times the lowest
(or highest) price. Heynen and Kat (1994, 1997) suggest a way of reducing the price of these partial
floating-strike lookback options while preserving some of their good qualities and derives explicit
pricing formulas for the proposed options. Lee (2008) derives explicit pricing formulas for floating-
strike lookback options whose monitoring period starts at an arbitrary date and ends at another
arbitrary date before maturity.

However, researches listed above concern lookback options whose payoff depends on one underlying
asset. This paper proposes outside floating-strike lookback options whose payoffs depend on prices
of two underlying assets: the terminal value of one asset is used for determining the payoff, and
the maximum (or minimum) value of the other asset for determining the floating strike. In other
words, an outside floating-strike lookback call (or put) option gives the holder the right to buy (or
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sell) one underlying asset at some percentage of the lowest (or highest) price of the other underlying
asset. This paper will present explicit pricing formulas for these proposed options.

This paper is organized as follows. Section 2 will discuss some basics for pricing contingenf claims
and will derive some useful expectations and probabilities for pricing the proposed options. Section
3 and 4 will present explicit pricing formulas for the outside floating-strike lookback put and call
options, respectively. In addition, Section 5 will derive explicit pricing formulas for these options
when their underlying assets pay dividends continuously at a rate proportional to their prices. These
pricing formulas are generalization of the pricing formulas in Sections 3 and 4. Some numerical
examples will be discussed.

2. Esscher Transforms and Some Useful Formulas

This section discusses some basics for pricing contingent claims and derives some useful expectations
for pricing the proposed options. If we assume the Black-Scholes framework, then according to
the fundamental theorem of asset pricing, the prices of contingent claims such as options can be
calculated as the discounted expectations of the corresponding payoffs with respect to the equivalent
martingale measure.

Gerber and Shiu (1994, 1996) showed that Esscher transforms are an efficient tool for finding the
equivalent martingale measure. While the Girsanov theorem used by many researchers provides us
with a more general tool for changing the probability measure, the method of Esscher transforms
is a more convenient and elegant tool than the Girsanov theorem if the logarithms of the prices of
the underlying assets are stochastic processes with stationary and independent increments. This
section briefly summarizes a special case of the method of Esscher transforms and demonstrates the
factorization formula that is a main feature of this method and that can simplify many calculations.

Let S1(t) and S2(t) denote the time-t prices of two underlying assets. Assume that these assets pay
no dividends. Assume that for t > 0, ¢ =1 and 2,

Si(t) = S:(0) exp(Xi(1)), (2.1)

where {X (t) = (X1(t),X2(¢))'} is a 2-dimensional Brownian motion with drift vector g = (1, p2)’,
X:(0) = 0 and diffusion matrix V equal to

0‘% pPo102 (2 2)
po102 0% ) '

Thus the 2-dimensional Brownian motion is a stochastic process with independent and stationary
increments and X (t) = (X1(t), X2(t))’ has a bivariate normal distribution with mean vector ut and
covariance matrix Vt.

For a nonzero real vector h = (h1, h2)’, the moment ‘generating function of X (t), E(eh'x ®)), exists
for all t > 0, because {X (t)} is the Brownian motion as described above. The stochastic process

{e"’me (e"’xm) ‘t}

is a positive martingale which can be used to define a new probability measure (. In technical
terms, this process is used to define the Radon-Nikodym derivative d@Q/dP, where P is the original
probability measure. We call Q) the Esscher measure of parameter vector h.
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For a random variable Y that is a real-valued function of {X(1),0 < t < T'}, the expectation of Y’
under the new probability measure @ is calculated as

-

(2.3)

eh’X(T)
E (ehxonT |’
which will be denoted by E[Y;h]. The risk-neutral measure is the Esscher measure of parameter

vector h = h* with respect to which the process {e”"*S;(¢)} is a martingale. Here, r is a risk-free
rate. Thus

E[e ™8i(t);h*] = Si(0). (2.4)
Therefore, h* is the solution of
2 AN
u+Vh*=(r~‘%, 7'—%) : (2.5)

For ¢ > 0, the moment generating function of X (¢) under Esscher measure of parameter vector h is
2 X (), . ' ’ ’ i .
Efe Jz) = exp | (W +h'V)at +2'Ves (2.6)

which implies that X (t) has a bivariate normal distribution with mean vector {(g+Vh)t and variance
V't under the Esscher measure. It can be shown that the process {X (¢)} under the Esscher measure
has independent and stationary increments. Thus, this process is a two-dimensional Brownian
motion with drift vector

2 2 .
p+Vh= may o3 901202 b} _ [ +oi hi + palaihz (2.7)
He2 poio2 03 h wa + poroahy + o5hs
and diffusion matrix V under the Esscher measure of parameter vector h.

Let us consider a special case of the factorization formula {Gerber and Shiu, 1994, 1996). For a
random variable Y that is a real-valued function of {X (¢), 0 <t < T},

E [eng(T)Y; h] - E {eg"“ﬂ; h] E[Y;h+tg. (2.8)

In particular, for an event B whose condition is determined by, {X (1),0 < ¢ < T'} formula (2.8)
can be expressed as follows:

E [69'”“1(3);4 —E {eﬂ”“"");h} Pr[B:h+g), (2.9)
where I(-) denotes the indicator function Pr(B; k) and denotes the probability of the event B under
Now, let,

Mo(T) = max {Xa2(r), 0 <+ < T} (2.10)

and

mz(T) = min {X2(r), 0 <7 < T} {2.11)
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for T > 0. In Lee (2004), it can be shown that the joint distribution function of M2(T) and X1 (T)
is

Pr [Xl(T) S I,MQ(T) < m]

z—wmT m-—pT %‘}m z—wmT 2om  —m — uT
=0 (ZOE ) - e (R - 2 o).
where ®3(a,b; p) denotes the bivariate standard normal distribution function with correlation co-
efficient p. This probability distribution function is related to two random variables, S:(T") and
max{S2(7), 0 < 7 < T}. Hence it will be used for calculating (2.13).
Next, consider some useful expectations for pricing the proposed options. Assume that { = 2ua/ o2,
n=1-—2po1/o2 and ¢ + £ # 0. The proof of (2.13) will be given in the Appendix.

E [e°'M2(T>1(M2(T) > X1(T) + k)]

= eonaT+}coiT g —k — (1 + cpo102 — p2 — coB)T  (p2 + co3)T —poio2 + 03
V(0% + 03 —2p0102)T " 0oVT (062 + 03 — 2p0102)0F
£ <—k — T —p2T )
+ [ , ;
C—I—£ 2 0’1\/T Usz P

b (5 v 2 ) et ()
c+&|nl o2 |
k/m+{(m + o) /)T —k/n—{(m + SEol)/n + p2 + £Epo102}T
Vv (ei/n*)T ’ VieE/n? + o2 + 2p07102/'r])T
. —ai/n’ — po102/1n }
V(03 /%) (63 /0% + 03 + 2p0102/n)

1+ & e (cHOnaT+i(c+6)%o3T
c+¢€

@, | 2K {1 = (c+&)por02 + npz —n(c+&o3}T —{u2 — (c+ &3 }T
2 »
V(0F +n?05 + 2npo102)T o2VT
_ po102 + 10}
" /(6% + n20% + 2npo103)03

() E)6)9)

Formula (2.13) will be useful for pricing the outside floating-strike put option. In addition, applying
(2.13), the next expectation (2.14) will be easily obtained and it will be useful for pricing the outside
floating-strike call option.

E [eC'mz(TU(m(T) < Xu(T) + k)]

2

=E [e—°'<—"‘2<T>>1(—m2(T) >~ X\(T) + (—k))}

=E [e TeMaxt=X2(n), 0STSTY [(Max {-X2(7), 0 < 7 < T} > =X (T) + (—k))]

2 6)-EHE))
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Note that the stochastic process {{—X1(t), —X2(t))'} is a 2-dimensional Brownian motion with drift
vector (—p1, —pz) and diffusion matrix V.

Finally, discuss some useful probabilities for pricing the proposed options. Applying (2.13) with
¢ = 0, we have

Pr(Ma(T) > X1(T) + k] = E[I (M(T) > X1(T) + k)]
-y (eO'W"")I (Ma(T) > X2 (T) + k)}

AN e

Similarly, applying (2.14) with ¢ = 0, we have
Primao(T) < Xo(T) + k] = E[I{ma(T) < X1 (T) + k)]
= E[e"™2 M [(ma(T) < X1(T) + k)]

A e

3. Outside Floating-Strike Lookback Put Option

The proposed outside floating-strike lookback put option gives the holder the right to sell one
underlying asset at some percentage of the highest price of the other underlying asset attained
during the whole life of the option. This section will derive an explicit pricing formula for the
outside floating-strike lookback put option.

Let us take a close look at the payoff of the outside floating-strike lookback put option. Assume

that X (> 0) is the percentage over the highest price. The payoff of this option can be is written as
follows:

(A max(S2(r), 0<7<T) = Si(T)), . (3.1)

To simplify writing, we define all expectations in this and next sections as taken with respect to
the risk-neutral measure. In other words, under this measure, the underlying stochastic processes
{Xi{r), T > 0} is a Brownian motion with drift vector (r — 63/2,r — 03/2) and diffusion matrix
V. By the fundamental theorem of asset pricing, the time-0 value of the payoff (3.1) is

e TE [(A . Sz(())eM‘l(m ~ 8 (0)6)(1(7‘}) :l . (3.2)
+

Calculating this discounted expectation (3.2) seems to require much complicated and tedious inte-
gration, but formulas (2.13) and (2.15) can simplify and reduce many calculations.

Therefore, the time-0 value of the outside floating-strike lookback put option can be rewritten and
decomposed into the sum of two expectations,

e TE [(A'SQ(0>EA42(T) - 51(0)€X1<T)) I <MQ(T) > X3(T) +1n <%)H

e TS (O)E {emw)] <M2(T) > X1 (T) +In <%))}

TG (0)E [exlmz (Mz(T) > Xy(T) + In (XS—EE%D} . (3.3)
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Applying (2.13), the first expectation in the RHS(right hand side) of (3.3) can be

1 r—laf |
A-52(0) r— 592

Applying the factorization formula (2.9), (2.15) and the fact that {e "7 Si(¢)} is a martingale under
the risk-neutral measure, the second term in the RHS of (3.3) will be

SO [ (M) > X() 41 (%))]

=e 7S, (0)E [exl(T)] Pr {MQ(T) > X1 (T)+In (Sl—(o)> 3 (1, 0)'}

A-52(0)
1
0 T+ 50’% o1
:Sl(O)D In S1(O) 5 1 9 3 o sP - (35)
A~ S2(0) T 501 + po102 2 )
Note that the drift vector is shifted because of

_ 12 1 5
"% ot poroz )\ (1) _ Tt 3.6
1 9 + 2 0 - 1 2 . ( . )

r— 592 poroz o2 T— 502t po102

Hence, placing (3.4) and (3.5) into (3.3), we have the time-0 value of the outside floating-strike put
option

1
1 r—Zob
Ae™ T S,(0)D (m S1(0) ) 7, ,<j1>,p
X - 52(0) r— 59 2

0 T+ —af o1
- 5:1(0)D ! 51(0) ) 1 22 . o (3.7)
PN 52(0) T = 502+ po102 oz

For numerical results of pricing formula (3.7), see Table 3.1. It is observed that T' and 01 /02 increase
formula (3.7), but r and p decrease it.

4. Qutside Floating-Strike Lookback Call Option

The proposed outside floating-strike lookback call option gives the holder the right to buy one
underlying asset at some percentage of the lowest price of the other underlying asset attained
during the whole life of the option. This section will derive an explicit pricing formula for the
outside floating-strike lookback call option. :

Let us take a close look at the payoff of the outside floating-strike lookback call option. Assume
that A (> 0) is the percentage over the lowest price. The payoff of this option is

(S1(T) — A min(Sz(7), 0 < 7 < T)), - (4.1)

By the fundamental theorem of asset pricing, the time-0 value of the payoff is

e E [(s1 (0)e*1 ™ — . Sz(O)emZ(T))J . (4.2)
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Table 3.1. Put option prices (51(0) = S2(0) = 100, A = 1,05 = 0.2)

p
T o1/o2 r -0.8 —0.4 0 0.4 0.8

0.04 8.843 8.589 8.324 8.048 7.786

0.5 0.06 8.701 8.426 8.139 7.840 7.549

0.08 8.570 8.273 7.964 7.641 7.323

0.04 10.527 10.092 9.603 9.026 8.277

0.25 1.0 0.06 10.404 9.947 9.435 8.833 8.054
0.08 10.289 9.809 9.275 8.649 7.838

0.04 12.383 11.848 11.236 10.503 9.525

1.5 0.06 12.268 11.710 11.076 10.319 9.312

0.08 12.160 11.579 10.923 10.143 9.107

0.04 12.481 12.095 11.691 11.268 10.856

0.5 0.06 12.207 11.778 11.331 10.860 10.391

0.08 11.960 11.491 11.001 10.482 9.954

0.04 14.912 14,272 13.549 12.695 11.580

0.50 1.0 0.06 14.670 13.985 13.217 12.314 11.136
0.08 14.449 13.719 12.908 11.957 10.716

0.04 17.571 16.795 15.900 14.824 13.381

1.5 0.06 17.341 16.518 15.580 14.457 12.956

0.08 17.129 16.261 15.280 14.111 12.553

Calculating this discounted expectation (4.2) seems to require much complicated and tedious inte-
gration, but formula (2.14) and (2.16) can simplify and reduce many calculations.

Therefore, the time-0 value of the outside floating-strike lookback call option can be rewritten and
decomposed into the sum of two expectations,

B (S0 x50 ) 1 (mafr) < () + 1 (F505) )]

A - 52(0)
=TS (0)E [exlml (mz(T) <Xi(T) +1In <517(0))>]

A 52(0)
_ )\e—rTsz(O)E e”TLQ(T)I m2(T) < X (T) +1In Sl—(()) . (4,3)
A-S2(0)
Applying (2.14), we have the second expectation in the RHS of (4.3)
1 7 10%
D~ (_ 50 - 2 . ,<Zl>,p . (4.4)
A~ S2(0) T 502 2

In addition, applying the factorization formula (2.9), (2.16) and the fact that {e™"7S;(t)} is a
martingale under the risk-neutral measure, the first term in the RHS of (4.3) will be

TS [0 (mafr) < X, < (5240 )]

=e TS, (0)E [eX1<T)] Pr [mz(T) < X1(T) +In (LO))> (1, 0)’}

A-S2(0
0 r+ -0t
= SI(O)D - In Sl(o) 1 2 2 3 (Zl ) P - (45)
- S2(0) r— 501+ poi02 2
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Table 4.1. Call option prices (S1(0) = S2(0) = 100, A = 1,02 = 0.2)

) .
T 71/ " 08 04 0 04 0.8
0.04 8.890 8725 8.553 8.381 8.234
0.5 0.06 9.053 8.907 8.754 8.601 8473
0.08 9.227 9.100 8.964 8.828 8.717
0.04 10.350 10.007 9.624 9.180 8617
0.25 1.0 0.06 10.476 10.155 9.794 9.373 8.839
0.08 10.609 10.311 9.971 9.572 9.066
0.04 12.030 11.579 11.074 10.483 9.713
1.5 0.06 12.138 11.710 11.227 10.658 9.917
0.08 12.252 11.847 11.385 10.839 10.126
0.04 12.573 12.363 12.145 11.928 11.747
05 0.06 12.905 12.732 12.548 12.366 12.219
0.08 13.267 13.127 12.975 12.824 12.706
0.04 14.558 14.101 13.590 13.000 12.256
0.50 1.0 0.06 14.810 14.396 13.928 13.382 12.693
0.08 15.083 14.711 14.283 13.781 13.145
0.04 16.867 16.256 15576 14.783 13755
1.5 0.06 17.078 16.513 15.876 15.127 14.155
0.08 17.307 16.786 16.190 15.486 14.568

Hence, placing (4.4) and (4.5) into (4.3), we have the time-0 value of the outside floating-strike call
option,

0 rt 1o
ag
51(0)D | - In 51(0) y = 1 22 ) <01> P
A~ S2(0) =502+ po102 2
1 r— laf
- )\e_TTS2(0)D' - In SI(O) y % N y <Zl > P - (46)
A+ S2(0) r— 503 2

For numerical results of pricing formula (4.6), see Table 4.1. This table shows that r, T and o1/02
increase formula (4.6), but p decreases it. On the other hand, risk-free rate r decreases formula
(3.7).

5. Continuous Constant-Yield Dividend

The previous sections have derived the explicit pricing formulas for the outside floating-strike look-
back options whose underlying assets pay no dividends. The pricing formulas in Sections 3 and
4 can be extended to the case where the underlying assets pay dividends continuously at a rate
proportional to their prices. This section will derive explicit pricing formulas for this case.

Let S;(t) denote the time-t price of two underlying assets for ¢ = 1, 2 respectively. Assume that §; is
the constant nonnegative dividend yield rate such that the assets pay dividends 6;S;(t)dt between
time ¢ and time t + dt. If all dividends of asset ¢ are reinvested in the asset, each share of the asset
at time 0 grows to e shares at time ¢. We assume that the prices of these assets follow the model
(2.1). In other words, if an investor buys one share of asset 7 at 5;(0) and reinvests all dividends in
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the asset, his fund value invested in asset 7 will be
1185 (t) = €%15,(0) exp (X:(1)) (5.1)

at time ¢. The risk-neutral measure is the Esscher measure of parameter vector h = h** with respect
to which the process {e”"~%)S;(t)} is a martingale. Therefore, h** is the solution of

ol o2\’
[.l:+vh**:<’l"*51—7,7’*(52"7) . (52)

Note that the process {X(¢)} is a Brownian motion with drift vector g+ Vh** and diffusion matrix
V under the risk-neutral measure. For further discussion, see Section 9 of Gerber and Shiu (1996).

By the fundamental theorem of asset pricing, the time-0 values of the payoffs (3.1) and (4.1) are
e TE {(A - 82(0)e™2(T) _ Sl(o)exlm) ;h**}
+

= AT (0)E {eM“T)I <M2(T) > Xy(T) + In <Aig(2%>) e

— e T T g ()R {exl(T)I <M2(T) > Xi(T) +1n (;%(%)) sh**} (5:3)

and
e TE [(Sl(())exl(ﬂ - 52(0)6m2<T)) ;h**}
+

51(0 o
= T TG (0)E | XD [ ma(T) < X4(T) +In S0 :h
A~ S52(0)
—rT ma(T) 51(0) L
—Ae” T S,(0)E e Ime(T) < Xi(T)+In | —5—~< | |;h (5.4)
- S52(0)

respectively, of which two expectations are the same as ones of (3.3) and (4.3) except that the
underlying stochastic process is a Brownian motion with drift vector g 4+ Vh**, diffusion matrix V
and e~ (" 0UT 5, (0) E[eX1 (D), h**] = 51(0). Therefore, the time-0 values of the outside floating-strike
lookback put and call options are

1 T — 51 - —0%
Ae"T 55(0)D ln< $1(0) ) , E <31> P
- 82(0) 7“—52—-2-02 2
0 7‘—(51 +—O’f
- 6_61T81(O)D 1 SI(O) ’ 1 5 2 ) (Zl> y P (55)
1 A - S2(0) 7"—52—502 + poi0o2 ?
and
1 2
0 7 =81+ so1 o
e_élTsl(O)D - In 51(0) T 1 22 ) <01> s P
A - S2(0) r—02 — 503+ po102 2
1 r—261 — =0}
- )\e_TTS2(O)D - 1 Sl(o) [ % 5 ’ <Z_l> P (56)
ANTS(0) r—dz— o3 :
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Table 5.1. Put option prices (dividend) (S1(0) = S2(0) = 100, A = 1,01 = 02 = 0.2, T = 0.5, 7 = 0.06)

P
& 8 08 04 0 0.4 0.8

0.00 14.670 13.985 13.217 12.314 11.136
0.01 0.00 14.976 14.309 13.561 12.683 11.547
0.02 : 15.286 14.637 13.909 13.055 11.962
0.03 15.600 14.969 14.261 13.432 12.381
0.00 14.409 13.733 12.972 12.073 10.893
0.01 001 14.714 14.055 13.314 12.439 11.299
0.02 : 15.022 14.381 13.659 12.809 11.709
0.03 15.334 14.711 14.008 13.182 12.124
0.00 14.154 13.486 12.732 11.839 10.657
0.01 0.02 14.457 13.807 13.072 12.201 11.059
0.02 14.763 14.130 13.415 12.568 11.465
0.03 15.073 14.458 13.761 12.939 11.876
0.00 13.905 13.245 12.499 11.611 10.430
0.01 0.03 14.206 13.563 12.835 11.971 10.827
0.02 : 14.510 13.885 13.176 12.334 11.229
0.03 14.818 14.210 13.520 12.702 11.636

Table 5.2. Call option prices (dividend) (S1(0) = S2(0) = 100, A = 1,01 = 02 = 0.2, T = 0.5,r = 0.06)

p
& 82 0.8 04 0 0.4 0.8
0.00 14.810 14.396 13.928 13.382 12.693
0.01 0.00 14.435 14.008 13.526 12.963 12.247
0.02 ) 14.067 13.627 13.130 12.551 11.809
0.03 13.704 13.251 12.741 12.146 11.378
0.00 14.984 14.565 14.092 13.544 12.858
0.01 0.01 14.608 14.175 13.688 13.123 12.410
0.02 ’ 14.238 13.792 13.291 12.709 11.969
0.03 13.875 13.415 12.900 12.302 11.535
0.00 15.161 14.736 14.259 13.709 13.028
0.01 0.02 14.784 14.345 13.854 13.287 12.577
0.02 ’ 14.413 13.961 13.455 12.871 12.134
0.03 14.048 13.582 13.063 12.461 11.697
0.00 15.341 14.911 14.430 13.879 13.203
0.01 0.03 14.963 14.518 14.023 13.454 12.750
0.02 14.591 14.132 13.623 13.036 12.303
0.03 14.225 13.753 13.229 12.625 11.864

respectively.

Finally, let us discuss numerical results of (5.5) and (5.6). For numerical results of put pricing
formula (5.5), see Table 5.1. This table shows that §; increases formula (5.5), but §2 and p decrease
it. In addition, for numerical results of call pricing formula (5.6), see Table 5.2. This table shows
that 61 and p decrease formula (5.6), but d2 increases it.

6. Conclusion

This paper has derived explicit pricing formulas for the proposed outside floating-strike lookback op-
tions and discussed numerical results of the pricing formulas under either non-dividend assumption
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or continuous dividend assumption. More realistic assumptions in pricing outside floating-strike
lookback options should be introduced in future research: stochastic interest rates, flexible moni-
toring periods and transaction costs.

Appendix
Proof of (2.13)

First, let us discuss the joint probability distribution function of random variables M»(T) and
X3 (T)v

Pr{X.(T) <&, M2(T) <m)
x—mT m— T ) 22m (:c—,ulT 2om  —m — p2T )

= , ipl—e2 @ - ) Y

? ( VT ovT ‘\o/T  ood/T oodT
Applying the fact that (X:(7"), Xo(T)) follows a bivariate normal distribution, the two standard
bivariate normal distribution functions of {2.12) can be expressed as follows:
® <£ — 1T m— poT
2 s 3
VT ' ooVT

(2.12)

/)) = Pr{X((T) <z, X2(T)<m) (A1)

and

® (’L —wT  2om —m— puT )
2 - ; ;
ovT — oVT' VT

Hence, placing {A.1) and {A.2) into (2.12), we have

> =Pr (Xl(T) <z - Zp%m» Xa2(T) < -m) - (A2)

Pr (Xl(T} S x, i’\/IZ(T) S m)

=Pr(Xi(T) <z, Xo(T) < m) ~ eb‘:ﬁsz‘r (XL(T) <z - ’Zpg—l-m, Xo(T) £ -m) . (A3)
2

Next, let us derive two double integral formulas used many times for the proof of (2.13). Applying
the factorization formula (2.9), one double integral can be expressed as follows:

hyx ) - )
] a-z+by<le e 8yaxPr(X1 {T) S x, )(2(’1 ) S y)d:’gdy
cztdy<f

=FE [e’”'xlml(a CXUT) +b- Xo(T) < e, c- Xy (T) + d- Xo(T) < f)]

=K [ehl'xlm] Pr(a- X1(T)+b- Xa(T) < e, ¢ Xy (T) +d - Xa(T) < f;(ha,0))

H

B eh1#1T+%h%0%T@2 € — [a(ul + hlU%) + b(;uz + hlpglo-z)]T
V(@202 £ 6202 + 2abporoa) T

f—lelur + haod) + d(us + hipoioa)iT )
V(207 + d202 + 2cdparo2)T ' ’

(A.4)

where px = {acol +(ad + bc)poyoz + bdos } /i /a20F + b203 +2abporoz) (o +d20f + 2cdpoios)}.
Similarly, the other double integral can be calculated as follows:

2

ry O ) < <
errby<e 90z Pr(X (T) < z, X2(T) < y)dzdy
catdylf
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= E [ehZ'X2<T>1(a CXUT)+b- Xa(T) < e, ¢ X2(T) +d - Xo(T) < f)]
E

[e"2 X2 T>] Pr(a- Xi(T) + b Xa(T) < e, ¢ X1(T) +d- Xa(T) < £ (0, h2)’)

k)

_ GramaT+}n3o3Tg (€~ [a(p1 + hapoyoa) + b(uz + hao3)|T
V(a20% + b202 + 2abpo102)T

f = le(p1 + haporo2) + d(pz + haod)]T s (A.5)
V(202 + d20% + 2cdpo102)T ’
Now, let us derive (2.13). The expectation of (2.13) can be expressed as

E[e“'MﬂT)I(Mz(T) > X1 (T) +k)] = / / N +ke°"" a:;mPr(Xl(T)gac, My(T) <m)dzdm (A.6)

which applying (A.3), will be decomposed into the sum of three double integrals as follows:

em 02
,//m>z+ke mdz Pr(X:(T) < z, X2(T) < m)dzdm

-5 /,[n>z+k C+_2a { ( (T)<z— 2ﬂg_lm,X2(T) < —m)] dxdm

(C+2—“§)m 92 o1
_ o < p—9p_t < —
//7",?1““ e R [Pr (Xl )<z 2pa2 m, X2(T) < m)] dxdm

= (1) - 2“2 n) - (. (A7)

Applying (A.5), the ﬁrst double integral of (A.7) will be

(I) = e T+}edT g, —k — (1 + cpor02 — p2 — co)T  (p2 + co3)T
V(0% + 02 — 2po102)T T oVT

. —po102 + a% (A 8)
"V(o?+ 0% —2p0105)0% )

Let us consider the second double integral of (A.7). Calculating the inside integral, the second
double integral of (A.7) will be written as follows:

an // letom O [Pr (Xl (T) <z - 2p22m, X2(T) < -—m)] dzdm
m>z+k 02

= x=m-—-k
— / (c+£)m/ 9 [pr (Xl(T) <z-— zpﬂm, X2(T) < —m)] dzdm
me0 - or o2

= / O eletOmpy <X1 (T) < (1 - 2pgi> m -k, Xo(T) < —m) dm. (A.9)
. m=0 2
Here, assume that n = 1 — 2p01/02. If we apply integration by parts, (A.9) will be
1 [ ctom _ N L
c+§ [e Pr(X:i(T) < nm —k, X2(T) < m)]m »
c+§ C+§)m Pr(Xl(T) <ngm —k, X2(T) < —m)dm
= (II-1)— —(11 -2). (A.10)

c+¢
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The fixst term of (A.10) is

‘ 1 bk~ T —peT
Pr(Xy(T) < —k, X2(T) < 0) = — <1>< , p)=(1-1). (A1l
g entn <0 =" (g o) T
Now, we need to calculate (II-2), the last integral of (A.10). Assume that ¢(z1,z2; p) denote the
joint density function of the bivariate standard normal distribution with correlation coefficient p.
Let g1 = nm—k and g2 = —m. The last integral of (A.10) can be expressed in terms of ¢2(x1,z2; p)
as follows:

m

et dd (X (T) < nm — k, Xo(T) < —~m)dm
=0

-7
:/:

(-2

T erom / / <u—#1T v pel p) d@rdu} dm, (A.12)
=0 {dm oo 01\/_0'2\/_ oVT ' o2VT

which, differentiating the inside double integral with respect to variable m, will be

/mz Serom | dgr ./92 1 b (91*#13” v — 2T p) do
m=0 dm oo 0:VToo/T o WT ~ o2VT ’

u—u]T gz—/x,‘zT )
, sp | duldm
dm /oc o1V 0'2\/ ( 01\/ 0‘2\/—T

_ (c+€)m —mT v—pT )
= i p | dvdm
[m—- / o1 To'z\/_ ( oivT ~ oaVT
ma=oo  pgy
letem m!’ g2 — 2T )d 4 .
;p ) dudm. (A.13)
/ / 01\/_02\/_ ( owWT ~— aoVT

Using a change of variables with g1 = nm — k and g2 = —m in the two double integrals of the RHS
of (A.13) and applying (A.4) and (A.5), (A.13) can be calculated as follows:

Qlere (2t 1 (91 — T v—pT )
Clg.<k , i p | dvdg
|77| // g1<_— 0’1‘\/T0’2\/T¢2 O’lvT 0'2\/ !

v<

- pletE) (—g2) ! u—mT g2 — T > dud
/A‘H’”%_k 01\/?02\/7(/52( oWVT = 0oVT P 92

g92<
_ etk ST (55 P
Il
k/n+ {(m + et z) /n} ~k/n— {(ul + %af) /n+ p2 + %ipoloz} T
X q>2 , :
v (02/7)2)T \/(U§/772+U§+21)0102/77)T
—ot /0’ — poroa/n
\/(0'%/"72) (c?/n? + a3 + 2po102/7)

k]

V(0% + 1203 + 2npo102)T
—{p2 — (c+€)o3}T po1os + 103 }

— e (O TH} (4003 T g, {—k — {1 — (c+ &poroa + nua —nlc +£o3}T

o2T ’ V(62 + 202 + 2npai62)o?
= {II - 2). (A.14)
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Let us calculate the last integral of (A.7). Remind that £ = 2ua2/03, n = 1 — 2po1/o2. Using a

change of variables with v = 2 — 2p01/g2m and v = —m, the last double integral of (A.7) will be
(I11) = / o e (O 372 S [Pr(X,(T) < u, Xa(T) < v)}dudy (A.15)

of which the second-order derivative with respect to m and z becomes

afa [Pr(X.(T) < u, Xo(T) < v)] = 207" aa

if chain rule is applied with du/0z =1, Bu/am = —2p01/02, Ov/dz = 0 and dv/Om = —1. Hence,
placing (A.16) into (A.15), we have

[Pr(X:1(T) < u, X2(T) < 0), (A.16)

- 0?
_ (c+€&)v
(I1I) = // veo € ERew [Pr(X1(T) < u, X2(T) < v)]dudv

ut+nu<—k

(orery 07 )
_ 2p_ // €O PH(X(T) < w, Xa(T) < cldudy

utnu<—k

—(I-1) - 2pU—2(HI —2). (A.17)

Applying (A.5), the first double integral of (A.17) will be

(1—1) = o~ (c+Ou2T+3 (c+6)203T

w o, | - (c+&)poroz + nuz = n{c+ o3} T —{p2 — (c +§) oz}T
2 )
V(03 +n?03 + 2npo102)T o2VT
po102 + 703 (A.18)
V(02 + 1202 + 2npo102)02

Now, let us consider (ITI-2), the second double integral of (A.17). The second-order derivative in
the second double integral of (A.17) can be calculated as follows:

62
62

“ v 1 z— p,lT w — NQT ) :|
= — , ;p ) dwdz
ou? |:/~oo /—oo 0’1\/T0'2’\/ ¢2 ( 0‘1\/ 02\/T p

_anr 1 u-—ulTw 2T >d]
Ou [/—oo 01\/702\/T¢2< 01\/_ 02\/_ )

v 1 0 uw— T w-— pT )
= (R , ; dw. A.19
/_Qo o1vVToavT 8U¢2 ( ovT agaovT P ( )

Placing (A.19) into the second double integral of (A.17), we have a triple integral,

1 0 u—ulT w— ugT
(111 — 2) / / / ~(e+Ov - ( : )dwdudv
Zi v < O'1\/TO'2\/’I‘8'U«¢2 ovT oV T P
<v

w

_ —(c+&)v 1 I:/ 0 (’LL—,UqT w — ;LQT ) :l
= e —_—— — ¢ ;p | du| dwdv
//w<v<o o1VToaVT | uc—nv—r Ou ? o1vT = o:VT

_ (oL ( —mw—k—mT w—pT )
= e o2 , ;p | dwdv, (A.20)
//w<11<0 U1ﬁ02ﬁ 01\/_ 0‘2\/_

[PI‘(Xl(T) < u, Xz( ) S 'U]
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which, using a change of variables with y = —nv — k and applying (A.4), can be calculated as
follows:

1 mk// et 1 (y—mT w— pT )
e _u k €7 P2 ; ip | dwdy
| J, 5, o1VTorwT  \ oiVT ' o3/T

n TWSTy

1 etgy et 1(et8)2, 2
ke"“1T+2(n>ng

i
< B, [k/n ~{ =l et 9ot/m)/m)T
(o /n*)T
—k/n— {1 + (c+ 0T /n)/n+ p2 + (c+ E)poroa/n}T —o?/n* — poroa/n }
V(o3 /n? + 03 + 2p0102/n)T V(@ )02 /n? + 0% + 2p0102/1)
= (III - 2). (A.21)

Finally, according to (A.7), (A.9) and (A.17), expectation (2.13) can be written as

— (1) —¢ ((n - ig(n _ 2)) - (—(IH 1)~ 2p 211l - 2))

= (A8) — €(A11) + %ﬁ(/xu) +(A18) + ZpZ—;(AQl)

= (2.13).

Here, the normal distribution function in the first term of (A.14) is the same as that in (A.21} and
the distribution function in the second term of (A.14) is the same as that in (A.18). Thus, (2.13)
consists of four bivariate normal distribution functions.
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