DOI QR코드

DOI QR Code

Aberrant phosphorylation in the pathogenesis of Alzheimer's disease

  • Chung, Sul-Hee (Graduate Program in Neuroscience, Institute for Brain Science and Technology, Inje University)
  • Published : 2009.08.31

Abstract

The modification of proteins by reversible phosphorylation is a key mechanism in the regulation of various physiological functions. Abnormal protein kinase or phosphatase activity can cause disease by altering the phosphorylation of critical proteins in normal cellular and disease processes. Alzheimer' disease (AD), typically occurring in the elderly, is an irreversible, progressive brain disorder characterized by memory loss and cognitive decline. Accumulating evidence suggests that protein kinase and phosphatase activity are altered in the brain tissue of AD patients. Tau is a highly recognized phosphoprotein that undergoes hyperphosphorylation to form neurofibrillary tangles, a neuropathlogical hallmark with amyloid plaques in AD brains. This study is a brief overview of the altered protein phosphorylation pathways found in AD. Understanding the molecular mechanisms by which the activities of protein kinases and phosphatases are altered as well as the phosphorylation events in AD can potentially reveal novel insights into the role aberrant phosphorylation plays in the pathogenesis of AD, providing support for protein phosphorylation as a potential treatment strategy for AD.

Keywords

References

  1. Grimes, C. A. and Jope, R. S. (2001) The multifaceted roles of glycogen synthase kinase 3b in cellular signaling. Prog. Neurobiol. 65, 391-426 https://doi.org/10.1016/S0301-0082(01)00011-9
  2. Thornton, T. M., Pedraza-Alva, G., Deng, B., Wood, C. D., Aronshtam, A., Clements, J. L., Sabio, G., Davis, R. J., Matthews, D. E., Doble, B. and Rincon, M. (2008) Phosphorylation by p38 MAPK as an alternative pathway for GSK3b inactivation. Science 320, 667-670 https://doi.org/10.1126/science.1156037
  3. Balaraman, Y., Limaye, A. R., Levey, A. I. and Srinivasan, S. (2006) Glycogen synthase kinase 3b and Alzheimer's disease: pathophysiological and therapeutic significance. Cell Mol. Life Sci. 63, 1226-1235 https://doi.org/10.1007/s00018-005-5597-y
  4. Hooper, C., Killick, R. and Lovestone, S. (2008) The GSK3 hypothesis of Alzheimer's disease. J. Neurochem. 104, 1433-1439 https://doi.org/10.1111/j.1471-4159.2007.05194.x
  5. Hye, A., Kerr, F., Archer, N., Foy, C., Poppe, M., Brown, R., Hamilton, G., Powell, J., Anderton, B. and Lovestone, S. (2005) Glycogen synthase kinase-3 is increased in white cells early in Alzheimer's disease. Neurosci. Lett. 373, 1-4 https://doi.org/10.1016/j.neulet.2004.10.031
  6. Leroy, K., Yilmaz, Z. and Brion, J. P. (2007) Increased level of active GSK-3b in Alzheimer's disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol. Appl. Neurobiol. 33, 43-55
  7. Pei, J. J., Tanaka, T., Tung, Y. C., Braak, E., Iqbal, K. and Grundke-Iqbal, I. (1997) Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J. Neuropathol. Exp. Neurol. 56, 70-78 https://doi.org/10.1097/00005072-199701000-00007
  8. Swatton, J. E., Sellers, L. A., Faull, R. L., Holland, A., Iritani, S. and Bahn, S. (2004) Increased MAP kinase activity in Alzheimer's and Down syndrome but not in schizophrenia human brain. Eur. J. Neurosci. 19, 2711-2719 https://doi.org/10.1111/j.0953-816X.2004.03365.x
  9. Lucas, J. J., Hernandez, F., Gomez-Ramos, P., Moran, M. A., Hen, R. and Avila, J. (2001) Decreased nuclear beta- catenin, tau hyperphosphorylation and neurodegeneration in GSK-3b conditional transgenic mice. EMBO. J. 20, 27-39 https://doi.org/10.1093/emboj/20.1.27
  10. Phiel, C. J., Wilson, C. A., Lee, V. M. and Klein, P. S. (2003) GSK-3a regulates production of Alzheimer's disease amyloid-beta peptides. Nature 423, 435-439 https://doi.org/10.1038/nature01640
  11. Dhavan, R. and Tsai, L. H. (2001) A decade of CDK5. Nat. Rev. Mol. Cell Biol. 2, 749-759 https://doi.org/10.1038/35096019
  12. Lee, M. S., Kwon, Y. T., Li, M., Peng, J., Friedlander, R. M. and Tsai, L. H. (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405, 360-364 https://doi.org/10.1038/35012636
  13. Patrick, G. N., Zukerberg, L., Nikolic, M., de la Monte, S., Dikkes, P. and Tsai, L. H. (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615-622 https://doi.org/10.1038/45159
  14. Tandon, A., Yu, H., Wang, L., Rogaeva, E., Sato, C., Chishti, M. A., Kawarai, T., Hasegawa, H., Chen, F., Davies, P., Fraser, P. E., Westaway, D. and St George- Hyslop, P. H. (2003) Brain levels of CDK5 activator p25 are not increased in Alzheimer's or other neurodegenerative diseases with neurofibrillary tangles. J. Neurochem. 86, 572-581 https://doi.org/10.1046/j.1471-4159.2003.01865.x
  15. Cruz, J. C., Tseng, H. C., Goldman, J. A., Shih, H. and Tsai, L. H. (2003) Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40, 471-483 https://doi.org/10.1016/S0896-6273(03)00627-5
  16. Cruz, J. C., Kim, D., Moy, L. Y., Dobbin, M. M., Sun, X., Bronson, R. T. and Tsai, L. H. (2006) p25/cyclin-dependent kinase 5 induces production and intraneuronal accumulation of amyloid beta in vivo. J. Neurosci. 26, 10536-10541 https://doi.org/10.1523/JNEUROSCI.3133-06.2006
  17. Lau, K. F., Howlett, D. R., Kesavapany, S., Standen, C. L., Dingwall, C., McLoughlin, D. M. and Miller, C. C. (2002) Cyclin-dependent kinase-5/p35 phosphorylates Presenilin 1 to regulate carboxy-terminal fragment stability. Mol. Cell Neurosci. 20, 13-20 https://doi.org/10.1006/mcne.2002.1108
  18. Song, W. J., Sternberg, L. R., Kasten-Sportes, C., Keuren, M. L., Chung, S. H., Slack, A. C., Miller, D. E., Glover, T. W., Chiang, P. W., Lou, L. and Kurnit, D. M. (1996) Isolation of human and murine homologues of the Drosophila minibrain gene: human homologue maps to 21q22.2 in the Down syndrome 'critical region'. Genomics 38, 331-339 https://doi.org/10.1006/geno.1996.0636
  19. Altafaj, X., Dierssen, M., Baamonde, C., Marti, E., Visa, J., Guimera, J., Oset, M., Gonzalez, J. R., Florez, J., Fillat, C. and Estivill, X. (2001) Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down's syndrome. Hum. Mol. Genet. 10, 1915-1923 https://doi.org/10.1093/hmg/10.18.1915
  20. Tejedor, F., Zhu, X. R., Kaltenbach, E., Ackermann, A., Baumann, A., Canal, I., Heisenberg, M., Fischbach, K. F. and Pongs, O. (1995) minibrain: a new protein kinase family involved in postembryonic neurogenesis in Drosophila. Neuron 14, 287-301 https://doi.org/10.1016/0896-6273(95)90286-4
  21. Fotaki, V., Dierssen, M., Alcantara, S., Martinez, S., Marti, E., Casas, C., Visa, J., Soriano, E., Estivill, X. and Arbones, M. L. (2002) Dyrk1A haploinsufficiency affects viability and causes developmental delay and abnormal brain morphology in mice. Mol. Cell Biol. 22, 6636-6647 https://doi.org/10.1128/MCB.22.18.6636-6647.2002
  22. Galceran, J., de Graaf, K., Tejedor, F. J. and Becker, W. (2003) The MNB/DYRK1A protein kinase: genetic and biochemical properties. J. Neural Transm. Suppl. 67, 139-148 https://doi.org/10.1007/BF01243366
  23. Hammerle, B., Elizalde, C., Galceran, J., Becker, W. and Tejedor, F. J. (2003) The MNB/DYRK1A protein kinase: neurobiological functions and Down syndrome implications. J. Neural. Transm. Suppl. 67, 129-137 https://doi.org/10.1007/978-3-7091-6721-2_11
  24. Dowjat, W. K., Adayev, T., Kuchna, I., Nowicki, K., Palminiello, S., Hwang, Y. W. and Wegiel, J. (2007) Trisomy-driven overexpression of DYRK1A kinase in the brain of subjects with Down syndrome. Neurosci. Lett. 413, 77-81 https://doi.org/10.1016/j.neulet.2006.11.026
  25. Kimura, R., Kamino, K., Yamamoto, M., Nuripa, A., Kida, T., Kazui, H., Hashimoto, R., Tanaka, T., Kudo, T., Yamagata, H., Tabara, Y., Miki, T., Akatsu, H., Kosaka, K., Funakoshi, E., Nishitomi, K., Sakaguchi, G., Kato, A., Hattori, H., Uema, T. and Takeda, M. (2007) The DYRK1A gene, encoded in chromosome 21 Down syndrome critical region, bridges between beta-amyloid production and tau phosphorylation in Alzheimer disease. Hum. Mol. Genet. 16, 15-23 https://doi.org/10.1093/hmg/ddl437
  26. Ryoo, S. R., Cho, H. J., Lee, H. W., Jeong, H. K., Radnaabazar, C., Kim, Y. S., Kim, M. J., Son, M. Y., Seo, H., Chung, S. H. and Song, W. J. (2008) Dual-specificity tyrosine(Y)-phosphorylation regulated kinase 1A-mediated phosphorylation of amyloid precursor protein: evidence for a functional link between Down syndrome and Alzheimer's disease. J. Neurochem. 104, 1333-1344 https://doi.org/10.1111/j.1471-4159.2007.05075.x
  27. Ryoo, S. R., Jeong, H. K., Radnaabazar, C., Yoo, J. J., Cho, H. J., Lee, H. W., Kim, I. S., Cheon, Y. H., Ahn, Y. S., Chung, S. H. and Song, W. J. (2007) DYRK1A-mediated hyperphosphorylation of Tau. A functional link between Down syndrome and Alzheimer disease. J. Biol. Chem. 282, 34850-34857 https://doi.org/10.1074/jbc.M707358200
  28. Ahn, K. J., Jeong, H. K., Choi, H. S., Ryoo, S. R., Kim, Y. J., Goo, J. S., Choi, S. Y., Han, J. S., Ha, I. and Song, W. J. (2006) DYRK1A BAC transgenic mice show altered synaptic plasticity with learning and memory defects. Neurobiol. Dis. 22, 463-472 https://doi.org/10.1016/j.nbd.2005.12.006
  29. Smith, D. J., Stevens, M. E., Sudanagunta, S. P., Bronson, R. T., Makhinson, M., Watabe, A. M., O'Dell, T. J., Fung, J., Weier, H. U., Cheng, J. F. and Rubin, E. M. (1997) Functional screening of 2 Mb of human chromosome 21q22.2 in transgenic mice implicates minibrain in learning defects associated with Down syndrome. Nat. Genet. 16, 28-36 https://doi.org/10.1038/ng0597-28
  30. Chang, L. and Karin, M. (2001) Mammalian MAP kinase signalling cascades. Nature 410, 37-40 https://doi.org/10.1038/35065000
  31. Roux, P. P. and Blenis, J. (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 68, 320-344 https://doi.org/10.1128/MMBR.68.2.320-344.2004
  32. Zhu, X., Lee, H. G., Raina, A. K., Perry, G. and Smith, M. A. (2002) The role of mitogen-activated protein kinase pathways in Alzheimer's disease. Neurosignals 11, 270- 281 https://doi.org/10.1159/000067426
  33. Pei, J. J., Braak, H., An, W. L., Winblad, B., Cowburn, R. F., Iqbal, K. and Grundke-Iqbal, I. (2002) Up-regulation of mitogen-activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer's disease. Brain Res. Mol. Brain Res. 109, 45-55 https://doi.org/10.1016/S0169-328X(02)00488-6
  34. Zhu, X., Raina, A. K., Lee, H. G., Chao, M., Nunomura, A., Tabaton, M., Petersen, R. B., Perry, G. and Smith, M. A. (2003) Oxidative stress and neuronal adaptation in Alzheimer disease: the role of SAPK pathways. Antioxid. Redox Signal. 5, 571-576 https://doi.org/10.1089/152308603770310220
  35. Otth, C., Mendoza-Naranjo, A., Mujica, L., Zambrano, A., Concha, II and Maccioni, R. B. (2003) Modulation of the JNK and p38 pathways by cdk5 protein kinase in a transgenic mouse model of Alzheimer's disease. Neuroreport 14, 2403-2409 https://doi.org/10.1097/00001756-200312190-00023
  36. Johnson, G. V. and Bailey, C. D. (2003) The p38 MAP kinase signaling pathway in Alzheimer's disease. Exp. Neurol. 183, 263-268 https://doi.org/10.1016/S0014-4886(03)00268-1
  37. Zhu, X., Rottkamp, C. A., Hartzler, A., Sun, Z., Takeda, A., Boux, H., Shimohama, S., Perry, G. and Smith, M. A. (2001) Activation of MKK6, an upstream activator of p38, in Alzheimer's disease. J. Neurochem. 79, 311-318 https://doi.org/10.1046/j.1471-4159.2001.00597.x
  38. Zhu, X., Ogawa, O., Wang, Y., Perry, G. and Smith, M. A. (2003) JKK1, an upstream activator of JNK/SAPK, is activated in Alzheimer's disease. J. Neurochem. 85, 87-93 https://doi.org/10.1046/j.1471-4159.2003.01645.x
  39. Reynolds, C. H., Nebreda, A. R., Gibb, G. M., Utton, M. A. and Anderton, B. H. (1997) Reactivating kinase/p38 phosphorylates tau protein in vitro. J. Neurochem. 69, 191-198 https://doi.org/10.1046/j.1471-4159.1997.69010191.x
  40. Reynolds, C. H., Utton, M. A., Gibb, G. M., Yates, A. and Anderton, B. H. (1997) Stress-activated protein kinase/ c-jun N-terminal kinase phosphorylates tau protein. J. Neurochem. 68, 1736-1744 https://doi.org/10.1046/j.1471-4159.1997.68041736.x
  41. Ledesma, M. D., Correas, I., Avila, J. and Diaz-Nido, J. (1992) Implication of brain cdc2 and MAP2 kinases in the phosphorylation of tau protein in Alzheimer's disease. FEBS Lett. 308, 218-224 https://doi.org/10.1016/0014-5793(92)81278-T
  42. Savage, M. J., Lin, Y. G., Ciallella, J. R., Flood, D. G. and Scott, R. W. (2002) Activation of c-Jun N-terminal kinase and p38 in an Alzheimer's disease model is associated with amyloid deposition. J. Neurosci. 22, 3376-3385
  43. Yasojima, K., Kuret, J., DeMaggio, A. J., McGeer, E. and McGeer, P. L. (2000) Casein kinase 1 d mRNA is upregulated in Alzheimer disease brain. Brain Res. 865, 116-120 https://doi.org/10.1016/S0006-8993(00)02200-9
  44. Walter, J., Fluhrer, R., Hartung, B., Willem, M., Kaether, C., Capell, A., Lammich, S., Multhaup, G. and Haass, C. (2001) Phosphorylation regulates intracellular trafficking of b-secretase. J. Biol. Chem. 276, 14634-14641 https://doi.org/10.1074/jbc.M011116200
  45. Flajolet, M., He, G., Heiman, M., Lin, A., Nairn, A. C. and Greengard, P. (2007) Regulation of Alzheimer's disease amyloid-b formation by casein kinase I. Proc. Natl. Acad. Sci. U S A 104, 4159-4164 https://doi.org/10.1073/pnas.0611236104
  46. Ksiezak-Reding, H., Pyo, H. K., Feinstein, B. and Pasinetti, G. M. (2003) Akt/PKB kinase phosphorylates separately Thr212 and Ser214 of tau protein in vitro. Biochim. Biophys. Acta. 1639, 159-168 https://doi.org/10.1016/j.bbadis.2003.09.001
  47. Pei, J. J., Khatoon, S., An, W. L., Nordlinder, M., Tanaka, T., Braak, H., Tsujio, I., Takeda, M., Alafuzoff, I., Winblad, B., Cowburn, R. F., Grundke-Iqbal, I. and Iqbal, K. (2003) Role of protein kinase B in Alzheimer's neurofibrillary pathology. Acta. Neuropathol. 105, 381-392
  48. Rickle, A., Bogdanovic, N., Volkman, I., Winblad, B., Ravid, R. and Cowburn, R. F. (2004) Akt activity in Alzheimer's disease and other neurodegenerative disorders. Neuroreport 15, 955-959 https://doi.org/10.1097/00001756-200404290-00005
  49. Griffin, R. J., Moloney, A., Kelliher, M., Johnston, J. A., Ravid, R., Dockery, P., O'Connor, R. and O'Neill, C. (2005) Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer's disease pathology. J. Neurochem. 93, 105-117 https://doi.org/10.1111/j.1471-4159.2004.02949.x
  50. Liang, Z., Liu, F., Grundke-Iqbal, I., Iqbal, K. and Gong, C. X. (2007) Down-regulation of cAMP-dependent protein kinase by over-activated calpain in Alzheimer disease brain. J. Neurochem. 103, 2462-2470 https://doi.org/10.1111/j.1471-4159.2007.04942.x
  51. Kim, S. H., Nairn, A. C., Cairns, N. and Lubec, G. (2001) Decreased levels of ARPP-19 and PKA in brains of Down syndrome and Alzheimer's disease. J. Neural Transm. Suppl. 61, 263-272
  52. Wang, L., Shim, H., Xie, C. and Cai, H. (2008) Activation of protein kinase C modulates BACE1-mediated beta-secretase activity. Neurobiol. Aging 29, 357-367 https://doi.org/10.1016/j.neurobiolaging.2006.11.001
  53. Buxbaum, J. D., Gandy, S. E., Cicchetti, P., Ehrlich, M. E., Czernik, A. J., Fracasso, R. P., Ramabhadran, T. V., Unterbeck, A. J. and Greengard, P. (1990) Processing of Alzheimer beta/A4 amyloid precursor protein: modulation by agents that regulate protein phosphorylation. Proc. Natl. Acad. Sci. U S A 87, 6003-6006 https://doi.org/10.1073/pnas.87.15.6003
  54. Tian, Q. and Wang, J. (2002) Role of serine/threonine protein phosphatase in Alzheimer's disease. Neurosignals 11, 262-269 https://doi.org/10.1159/000067425
  55. Gong, C. X., Grundke-Iqbal, I. and Iqbal, K. (1994) Dephosphorylation of Alzheimer's disease abnormally phosphorylated tau by protein phosphatase-2A. Neuroscience 61, 765-772 https://doi.org/10.1016/0306-4522(94)90400-6
  56. Gong, C. X., Grundke-Iqbal, I., Damuni, Z. and Iqbal, K. (1994) Dephosphorylation of microtubule-associated protein tau by protein phosphatase-1 and -2C and its implication in Alzheimer disease. FEBS Lett. 341, 94-98 https://doi.org/10.1016/0014-5793(94)80247-5
  57. Liu, F., Grundke-Iqbal, I., Iqbal, K. and Gong, C. X. (2005) Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur. J. Neurosci. 22, 1942-1950 https://doi.org/10.1111/j.1460-9568.2005.04391.x
  58. Liu, F., Iqbal, K., Grundke-Iqbal, I., Rossie, S. and Gong, C. X. (2005) Dephosphorylation of tau by protein phosphatase 5: impairment in Alzheimer's disease. J. Biol. Chem. 280, 1790-1796 https://doi.org/10.1074/jbc.M410775200
  59. Gong, C. X., Singh, T. J., Grundke-Iqbal, I. and Iqbal, K. (1993) Phosphoprotein phosphatase activities in Alzheimer disease brain. J. Neurochem. 61, 921-927 https://doi.org/10.1111/j.1471-4159.1993.tb03603.x
  60. Vogelsberg-Ragaglia, V., Schuck, T., Trojanowski, J. Q. and Lee, V. M. (2001) PP2A mRNA expression is quantitatively decreased in Alzheimer's disease hippocampus. Exp. Neurol. 168, 402-412 https://doi.org/10.1006/exnr.2001.7630
  61. Liu, F., Grundke-Iqbal, I., Iqbal, K., Oda, Y., Tomizawa, K. and Gong, C. X. (2005) Truncation and activation of calcineurin A by calpain I in Alzheimer disease brain. J. Biol. Chem. 280, 37755-37762 https://doi.org/10.1074/jbc.M507475200
  62. Gong, C. X. and Iqbal, K. (2008) Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr. Med. Chem. 15, 2321-2328 https://doi.org/10.2174/092986708785909111
  63. Tanimukai, H., Grundke-Iqbal, I. and Iqbal, K. (2005) Up-regulation of inhibitors of protein phosphatase-2A in Alzheimer's disease. Am. J. Pathol. 166, 1761-1771 https://doi.org/10.1016/S0002-9440(10)62486-8
  64. Ducruet, A. P., Vogt, A., Wipf, P. and Lazo, J. S. (2005) Dual specificity protein phosphatases: therapeutic targets for cancer and Alzheimer's disease. Annu. Rev. Pharmacol. Toxicol. 45, 725-750 https://doi.org/10.1146/annurev.pharmtox.45.120403.100040
  65. Vincent, I., Bu, B., Hudson, K., Husseman, J., Nochlin, D. and Jin, L. (2001) Constitutive Cdc25B tyrosine phosphatase activity in adult brain neurons with M phase-type alterations in Alzheimer's disease. Neuroscience 105, 639-650 https://doi.org/10.1016/S0306-4522(01)00219-6
  66. Ding, X. L., Husseman, J., Tomashevski, A., Nochlin, D., Jin, L. W. and Vincent, I. (2000) The cell cycle Cdc25A tyrosine phosphatase is activated in degenerating postmitotic neurons in Alzheimer's disease. Am. J. Pathol. 157, 1983-1990 https://doi.org/10.1016/S0002-9440(10)64837-7
  67. Rickle, A., Bogdanovic, N., Volkmann, I., Zhou, X., Pei, J. J., Winblad, B. and Cowburn, R. F. (2006) PTEN levels in Alzheimer's disease medial temporal cortex. Neurochem Int. 48, 114-123 https://doi.org/10.1016/j.neuint.2005.08.014
  68. Selkoe, D. J. (1991) The molecular pathology of Alzheimer's disease. Neuron 6, 487-498 https://doi.org/10.1016/0896-6273(91)90052-2
  69. Kopke, E., Tung, Y. C., Shaikh, S., Alonso, A. C., Iqbal, K. and Grundke-Iqbal, I. (1993) Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J. Biol. Chem. 268, 24374-24384
  70. Giese, K. P. (2009) GSK-3: a key player in neurodegeneration and memory. IUBMB Life 61, 516-521 https://doi.org/10.1002/iub.187
  71. Johnson, G. V. (2006) Tau phosphorylation and proteolysis: insights and perspectives. J. Alzheimers Dis. 9, 243- 250
  72. Bielska, A. A. and Zondlo, N. J. (2006) Hyperphosphorylation of tau induces local polyproline II helix. Biochemistry 45, 5527-5537 https://doi.org/10.1021/bi052662c
  73. Gong, C. X., Liu, F., Grundke-Iqbal, I. and Iqbal, K. (2006) Dysregulation of protein phosphorylation/ dephosphorylation in Alzheimer's disease: a therapeutic target. J. Biomed. Biotechnol. 2006, 31825
  74. Stoothoff, W. H. and Johnson, G. V. (2005) Tau phosphorylation: physiological and pathological consequences. Biochim. Biophys. Acta. 1739, 280-297 https://doi.org/10.1016/j.bbadis.2004.06.017
  75. Mazanetz, M. P. and Fischer, P. M. (2007) Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat. Rev. Drug Discov. 6, 464-479 https://doi.org/10.1038/nrd2111
  76. Johnson, G. V. and Stoothoff, W. H. (2004) Tau phosphorylation in neuronal cell function and dysfunction. J. Cell Sci. 117, 5721-5729 https://doi.org/10.1242/jcs.01558
  77. Russo, C., Venezia, V., Repetto, E., Nizzari, M., Violani, E., Carlo, P. and Schettini, G. (2005) The amyloid precursor protein and its network of interacting proteins: physiological and pathological implications. Brain Res. Rev. 48, 257-264 https://doi.org/10.1016/j.brainresrev.2004.12.016
  78. Gandy, S. E., Caporaso, G. L., Buxbaum, J. D., de Cruz Silva, O., Iverfeldt, K., Nordstedt, C., Suzuki, T., Czernik, A. J., Nairn, A. C. and Greengard, P. (1993) Protein phosphorylation regulates relative utilization of processing pathways for Alzheimer beta/A4 amyloid precursor protein. Ann. N. Y. Acad. Sci. 695, 117-121 https://doi.org/10.1111/j.1749-6632.1993.tb23038.x
  79. Lee, M. S., Kao, S. C., Lemere, C. A., Xia, W., Tseng, H. C., Zhou, Y., Neve, R., Ahlijanian, M. K. and Tsai, L. H. (2003) APP processing is regulated by cytoplasmic phosphorylation. J. Cell Biol. 163, 83-95 https://doi.org/10.1083/jcb.200301115
  80. Kimberly, W. T., Zheng, J. B., Town, T., Flavell, R. A. and Selkoe, D. J. (2005) Physiological regulation of the beta- amyloid precursor protein signaling domain by c-Jun N-terminal kinase JNK3 during neuronal differentiation. J. Neurosci. 25, 5533-5543 https://doi.org/10.1523/JNEUROSCI.4883-04.2005
  81. Pastorino, L. and Lu, K. P. (2004) Phosphorylation of the amyloid precursor protein (APP): is this a mechanism in favor or against Alzheimer's disease? Neurosci. Res. Comm. 35, 213-231 https://doi.org/10.1002/nrc.20035
  82. Standen, C. L., Brownlees, J., Grierson, A. J., Kesavapany, S., Lau, K. F., McLoughlin, D. M. and Miller, C. C. (2001) Phosphorylation of thr (668) in the cytoplasmic domain of the Alzheimer's disease amyloid precursor protein by stress-activated protein kinase 1b (Jun N-terminal kinase- 3). J. Neurochem. 76, 316-320 https://doi.org/10.1046/j.1471-4159.2001.00102.x
  83. Ramelot, T. A. and Nicholson, L. K. (2001) Phosphorylation- induced structural changes in the amyloid precursor protein cytoplasmic tail detected by NMR. J. Mol. Biol. 307, 871-884 https://doi.org/10.1006/jmbi.2001.4535
  84. Sano, Y., Nakaya, T., Pedrini, S., Takeda, S., Iijima-Ando, K., Iijima, K., Mathews, P. M., Itohara, S., Gandy, S. and Suzuki, T. (2006) Physiological mouse brain Abeta levels are not related to the phosphorylation state of threonine- 668 of Alzheimer's APP. PLoS ONE 1, e51 https://doi.org/10.1371/journal.pone.0000051
  85. Suzuki, T. and Nakaya, T. (2008) Regulation of amyloid beta-protein precursor by phosphorylation and protein interactions. J. Biol. Chem. 283, 29633-29637 https://doi.org/10.1074/jbc.R800003200
  86. Laudon, H., Hansson, E. M., Melen, K., Bergman, A., Farmery, M. R., Winblad, B., Lendahl, U., von Heijne, G. and Naslund, J. (2005) A nine-transmembrane domain topology for presenilin 1. J. Biol. Chem. 280, 35352- 35360 https://doi.org/10.1074/jbc.M507217200
  87. Parks, A. L. and Curtis, D. (2007) Presenilin diversifies its portfolio. Trends Genet. 23, 140-150 https://doi.org/10.1016/j.tig.2007.01.008
  88. Verdile, G., Gandy, S. E. and Martins, R. N. (2007) The role of presenilin and its interacting proteins in the biogenesis of Alzheimer's beta amyloid. Neurochem. Res. 32, 609-623 https://doi.org/10.1007/s11064-006-9131-x
  89. Spasic, D. and Annaert, W. (2008) Building gamma-secretase: the bits and pieces. J. Cell Sci. 121, 413-420 https://doi.org/10.1242/jcs.015255
  90. Kirschenbaum, F., Hsu, S. C., Cordell, B. and McCarthy, J. V. (2001) Substitution of a glycogen synthase kinase-3b phosphorylation site in presenilin 1 separates presenilin function from b-catenin signaling. J. Biol. Chem. 276, 7366-7375 https://doi.org/10.1074/jbc.M004697200
  91. Kirschenbaum, F., Hsu, S. C., Cordell, B. and McCarthy, J. V. (2001) Glycogen synthase kinase-3b regulates presenilin 1 C-terminal fragment levels. J. Biol. Chem. 276, 30701-30707 https://doi.org/10.1074/jbc.M102849200
  92. Fluhrer, R., Friedlein, A., Haass, C. and Walter, J. (2004) Phosphorylation of presenilin 1 at the caspase recognition site regulates its proteolytic processing and the progression of apoptosis. J. Biol. Chem. 279, 1585-1593 https://doi.org/10.1074/jbc.M306653200
  93. Kim, S. K., Park, H. J., Hong, H. S., Baik, E. J., Jung, M. W. and Mook-Jung, I. (2006) ERK1/2 is an endogenous negative regulator of the gamma-secretase activity. FASEB J. 20, 157-159 https://doi.org/10.1096/fj.05-4055fje
  94. Kuo, L. H., Hu, M. K., Hsu, W. M., Tung, Y. T., Wang, B. J., Tsai, W. W., Yen, C. T. and Liao, Y. F. (2008) Tumor necrosis factor-alpha-elicited stimulation of gamma-secretase is mediated by c-Jun N-terminal kinase-dependent phosphorylation of presenilin and nicastrin. Mol. Biol. Cell 19, 4201-4212 https://doi.org/10.1091/mbc.E07-09-0987
  95. Baki, L., Shioi, J., Wen, P., Shao, Z., Schwarzman, A., Gama-Sosa, M., Neve, R. and Robakis, N. K. (2004) PS1 activates PI3K thus inhibiting GSK-3 activity and tau overphosphorylation: effects of FAD mutations. EMBO J. 23, 2586-2596 https://doi.org/10.1038/sj.emboj.7600251
  96. Bhat, R. V., Budd Haeberlein, S. L. and Avila, J. (2004) Glycogen synthase kinase 3: a drug target for CNS therapies. J. Neurochem. 89, 1313-1317 https://doi.org/10.1111/j.1471-4159.2004.02422.x
  97. Glicksman, M. A., Cuny, G. D., Liu, M., Dobson, B., Auerbach, K., Stein, R. L. and Kosik, K. S. (2007) New approaches to the discovery of cdk5 inhibitors. Curr. Alzheimer Res. 4, 547-549 https://doi.org/10.2174/156720507783018181

Cited by

  1. Zooming into protein oligomerization in neurodegeneration using BiFC vol.35, pp.11, 2010, https://doi.org/10.1016/j.tibs.2010.05.007
  2. Tauopathy Differentially Affects Cell Adhesion Molecules in Mouse Brain: Early Down-Regulation of Nectin-3 in Stratum Lacunosum Moleculare vol.8, pp.5, 2013, https://doi.org/10.1371/journal.pone.0063589
  3. Tau protein phosphatases in Alzheimer's disease: The leading role of PP2A vol.12, pp.1, 2013, https://doi.org/10.1016/j.arr.2012.06.008
  4. Alkaloids enriched extract from Dendrobium nobile Lindl. attenuates tau protein hyperphosphorylation and apoptosis induced by lipopolysaccharide in rat brain vol.21, pp.5, 2014, https://doi.org/10.1016/j.phymed.2013.10.026
  5. Aberrant protein phosphorylation in Alzheimer disease brain disturbs pro-survival and cell death pathways vol.1862, pp.10, 2016, https://doi.org/10.1016/j.bbadis.2016.07.005
  6. An effective treatment for Alzheimer's disease must consider both amyloid and tau vol.7, pp.0, 2014, https://doi.org/10.1093/biohorizons/hzu002
  7. Protein Kinase Activity Decreases with Higher Braak Stages of Alzheimer’s Disease Pathology vol.49, pp.4, 2015, https://doi.org/10.3233/JAD-150429
  8. In vitro mitochondrial failure and oxidative stress mimic biochemical features of Alzheimer disease vol.63, pp.2, 2013, https://doi.org/10.1016/j.neuint.2013.05.005
  9. β1-adrenergic receptor activation enhances memory in Alzheimer's disease model vol.1, pp.5, 2014, https://doi.org/10.1002/acn3.57
  10. Accumulation of the SET protein in HEK293T cells and mild oxidative stress: cell survival or death signaling vol.363, pp.1-2, 2012, https://doi.org/10.1007/s11010-011-1158-x
  11. Axonal degeneration in Alzheimer's disease: When signaling abnormalities meet the axonal transport system vol.246, 2013, https://doi.org/10.1016/j.expneurol.2012.06.003
  12. Long-term effects of ionising radiation on the brain: cause for concern? vol.52, pp.1, 2013, https://doi.org/10.1007/s00411-012-0436-7
  13. Intracerebroventricular Streptozotocin as a Model of Alzheimer’s Disease: Neurochemical and Behavioral Characterization in Mice vol.31, pp.3, 2017, https://doi.org/10.1007/s12640-016-9684-7
  14. Allergy influences the inflammatory status of the brain and enhances tau-phosphorylation vol.16, pp.10, 2012, https://doi.org/10.1111/j.1582-4934.2012.01556.x
  15. Protein Phosphorylation is a Key Mechanism in Alzheimer’s Disease vol.58, pp.4, 2017, https://doi.org/10.3233/JAD-170176
  16. Quantitative proteomics analysis of phosphorylated proteins in the hippocampus of Alzheimer's disease subjects vol.74, pp.7, 2011, https://doi.org/10.1016/j.jprot.2011.03.033
  17. How wine polyphenols can fight Alzheimer disease progression: towards a molecular explanation vol.71, pp.20, 2015, https://doi.org/10.1016/j.tet.2014.06.091
  18. SNPs Associated with Cerebrospinal Fluid Phospho-Tau Levels Influence Rate of Decline in Alzheimer's Disease vol.6, pp.9, 2010, https://doi.org/10.1371/journal.pgen.1001101
  19. Dyrk1A-mediated phosphorylation of Presenilin 1: a functional link between Down syndrome and Alzheimer’s disease vol.115, pp.3, 2010, https://doi.org/10.1111/j.1471-4159.2010.06769.x
  20. Prediction of functional phosphorylation sites by incorporating evolutionary information vol.3, pp.9, 2012, https://doi.org/10.1007/s13238-012-2048-z
  21. Our “energy-Ca2+ signaling deficits” hypothesis and its explanatory potential for key features of Alzheimer’s disease vol.6, 2014, https://doi.org/10.3389/fnagi.2014.00329
  22. Calpastatin modulates APP processing in the brains of β-amyloid depositing but not wild-type mice vol.33, pp.6, 2012, https://doi.org/10.1016/j.neurobiolaging.2011.11.023
  23. The ε3 and ε4 Alleles of Human APOE Differentially Affect Tau Phosphorylation in Hyperinsulinemic and Pioglitazone Treated Mice vol.6, pp.2, 2011, https://doi.org/10.1371/journal.pone.0016991
  24. The organic cation transporter 3 (OCT3) as molecular target of psychotropic drugs: transport characteristics and acute regulation of cloned murine OCT3 vol.466, pp.3, 2014, https://doi.org/10.1007/s00424-013-1335-8
  25. Neuroprotective effects of Arctium lappa L. roots against glutamate-induced oxidative stress by inhibiting phosphorylation of p38, JNK and ERK 1/2 MAPKs in PC12 cells vol.38, pp.1, 2014, https://doi.org/10.1016/j.etap.2014.05.017
  26. Preferential Selectivity of Inhibitors with Human Tau Protein Kinase Gsk3 Elucidates Their Potential Roles for Off-Target Alzheimer’s Therapy vol.2013, 2013, https://doi.org/10.1155/2013/809386
  27. Aβ Influences Cytoskeletal Signaling Cascades with Consequences to Alzheimer’s Disease vol.52, pp.3, 2015, https://doi.org/10.1007/s12035-014-8913-4
  28. Haloperidol inactivates AMPK and reduces tau phosphorylation in a tau mouse model of Alzheimer's disease vol.2, pp.2, 2016, https://doi.org/10.1016/j.trci.2016.05.003
  29. Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer's disease transgenic mouse model vol.33, pp.12, 2012, https://doi.org/10.1016/j.neurobiolaging.2012.02.016
  30. Intracellular signal transduction as a factor in the development of “Smart” biomaterials for bone tissue engineering vol.108, pp.6, 2011, https://doi.org/10.1002/bit.23117
  31. BRI2 and BRI3 are functionally distinct phosphoproteins vol.28, pp.1, 2016, https://doi.org/10.1016/j.cellsig.2015.10.012
  32. The neuroprotective effects of Lonicera japonica THUNB. against hydrogen peroxide-induced apoptosis via phosphorylation of MAPKs and PI3K/Akt in SH-SY5Y cells vol.49, pp.4, 2011, https://doi.org/10.1016/j.fct.2011.01.008
  33. Altered protein phosphorylation as a resource for potential AD biomarkers vol.6, pp.1, 2016, https://doi.org/10.1038/srep30319
  34. Prediction of phosphorylation sites based on Krawtchouk image moments vol.85, pp.12, 2017, https://doi.org/10.1002/prot.25388
  35. Mutual Relationship between Tau and Central Insulin Signalling: Consequences for AD and Tauopathies? vol.107, pp.2, 2018, https://doi.org/10.1159/000487641
  36. Trace element analysis of hairs in patients with dementia vol.17, pp.2, 2010, https://doi.org/10.1107/S0909049509055319