References
- Grimes, C. A. and Jope, R. S. (2001) The multifaceted roles of glycogen synthase kinase 3b in cellular signaling. Prog. Neurobiol. 65, 391-426 https://doi.org/10.1016/S0301-0082(01)00011-9
- Thornton, T. M., Pedraza-Alva, G., Deng, B., Wood, C. D., Aronshtam, A., Clements, J. L., Sabio, G., Davis, R. J., Matthews, D. E., Doble, B. and Rincon, M. (2008) Phosphorylation by p38 MAPK as an alternative pathway for GSK3b inactivation. Science 320, 667-670 https://doi.org/10.1126/science.1156037
- Balaraman, Y., Limaye, A. R., Levey, A. I. and Srinivasan, S. (2006) Glycogen synthase kinase 3b and Alzheimer's disease: pathophysiological and therapeutic significance. Cell Mol. Life Sci. 63, 1226-1235 https://doi.org/10.1007/s00018-005-5597-y
- Hooper, C., Killick, R. and Lovestone, S. (2008) The GSK3 hypothesis of Alzheimer's disease. J. Neurochem. 104, 1433-1439 https://doi.org/10.1111/j.1471-4159.2007.05194.x
- Hye, A., Kerr, F., Archer, N., Foy, C., Poppe, M., Brown, R., Hamilton, G., Powell, J., Anderton, B. and Lovestone, S. (2005) Glycogen synthase kinase-3 is increased in white cells early in Alzheimer's disease. Neurosci. Lett. 373, 1-4 https://doi.org/10.1016/j.neulet.2004.10.031
- Leroy, K., Yilmaz, Z. and Brion, J. P. (2007) Increased level of active GSK-3b in Alzheimer's disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol. Appl. Neurobiol. 33, 43-55
- Pei, J. J., Tanaka, T., Tung, Y. C., Braak, E., Iqbal, K. and Grundke-Iqbal, I. (1997) Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J. Neuropathol. Exp. Neurol. 56, 70-78 https://doi.org/10.1097/00005072-199701000-00007
- Swatton, J. E., Sellers, L. A., Faull, R. L., Holland, A., Iritani, S. and Bahn, S. (2004) Increased MAP kinase activity in Alzheimer's and Down syndrome but not in schizophrenia human brain. Eur. J. Neurosci. 19, 2711-2719 https://doi.org/10.1111/j.0953-816X.2004.03365.x
- Lucas, J. J., Hernandez, F., Gomez-Ramos, P., Moran, M. A., Hen, R. and Avila, J. (2001) Decreased nuclear beta- catenin, tau hyperphosphorylation and neurodegeneration in GSK-3b conditional transgenic mice. EMBO. J. 20, 27-39 https://doi.org/10.1093/emboj/20.1.27
- Phiel, C. J., Wilson, C. A., Lee, V. M. and Klein, P. S. (2003) GSK-3a regulates production of Alzheimer's disease amyloid-beta peptides. Nature 423, 435-439 https://doi.org/10.1038/nature01640
- Dhavan, R. and Tsai, L. H. (2001) A decade of CDK5. Nat. Rev. Mol. Cell Biol. 2, 749-759 https://doi.org/10.1038/35096019
- Lee, M. S., Kwon, Y. T., Li, M., Peng, J., Friedlander, R. M. and Tsai, L. H. (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405, 360-364 https://doi.org/10.1038/35012636
- Patrick, G. N., Zukerberg, L., Nikolic, M., de la Monte, S., Dikkes, P. and Tsai, L. H. (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615-622 https://doi.org/10.1038/45159
- Tandon, A., Yu, H., Wang, L., Rogaeva, E., Sato, C., Chishti, M. A., Kawarai, T., Hasegawa, H., Chen, F., Davies, P., Fraser, P. E., Westaway, D. and St George- Hyslop, P. H. (2003) Brain levels of CDK5 activator p25 are not increased in Alzheimer's or other neurodegenerative diseases with neurofibrillary tangles. J. Neurochem. 86, 572-581 https://doi.org/10.1046/j.1471-4159.2003.01865.x
- Cruz, J. C., Tseng, H. C., Goldman, J. A., Shih, H. and Tsai, L. H. (2003) Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40, 471-483 https://doi.org/10.1016/S0896-6273(03)00627-5
- Cruz, J. C., Kim, D., Moy, L. Y., Dobbin, M. M., Sun, X., Bronson, R. T. and Tsai, L. H. (2006) p25/cyclin-dependent kinase 5 induces production and intraneuronal accumulation of amyloid beta in vivo. J. Neurosci. 26, 10536-10541 https://doi.org/10.1523/JNEUROSCI.3133-06.2006
- Lau, K. F., Howlett, D. R., Kesavapany, S., Standen, C. L., Dingwall, C., McLoughlin, D. M. and Miller, C. C. (2002) Cyclin-dependent kinase-5/p35 phosphorylates Presenilin 1 to regulate carboxy-terminal fragment stability. Mol. Cell Neurosci. 20, 13-20 https://doi.org/10.1006/mcne.2002.1108
- Song, W. J., Sternberg, L. R., Kasten-Sportes, C., Keuren, M. L., Chung, S. H., Slack, A. C., Miller, D. E., Glover, T. W., Chiang, P. W., Lou, L. and Kurnit, D. M. (1996) Isolation of human and murine homologues of the Drosophila minibrain gene: human homologue maps to 21q22.2 in the Down syndrome 'critical region'. Genomics 38, 331-339 https://doi.org/10.1006/geno.1996.0636
- Altafaj, X., Dierssen, M., Baamonde, C., Marti, E., Visa, J., Guimera, J., Oset, M., Gonzalez, J. R., Florez, J., Fillat, C. and Estivill, X. (2001) Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down's syndrome. Hum. Mol. Genet. 10, 1915-1923 https://doi.org/10.1093/hmg/10.18.1915
- Tejedor, F., Zhu, X. R., Kaltenbach, E., Ackermann, A., Baumann, A., Canal, I., Heisenberg, M., Fischbach, K. F. and Pongs, O. (1995) minibrain: a new protein kinase family involved in postembryonic neurogenesis in Drosophila. Neuron 14, 287-301 https://doi.org/10.1016/0896-6273(95)90286-4
- Fotaki, V., Dierssen, M., Alcantara, S., Martinez, S., Marti, E., Casas, C., Visa, J., Soriano, E., Estivill, X. and Arbones, M. L. (2002) Dyrk1A haploinsufficiency affects viability and causes developmental delay and abnormal brain morphology in mice. Mol. Cell Biol. 22, 6636-6647 https://doi.org/10.1128/MCB.22.18.6636-6647.2002
- Galceran, J., de Graaf, K., Tejedor, F. J. and Becker, W. (2003) The MNB/DYRK1A protein kinase: genetic and biochemical properties. J. Neural Transm. Suppl. 67, 139-148 https://doi.org/10.1007/BF01243366
- Hammerle, B., Elizalde, C., Galceran, J., Becker, W. and Tejedor, F. J. (2003) The MNB/DYRK1A protein kinase: neurobiological functions and Down syndrome implications. J. Neural. Transm. Suppl. 67, 129-137 https://doi.org/10.1007/978-3-7091-6721-2_11
- Dowjat, W. K., Adayev, T., Kuchna, I., Nowicki, K., Palminiello, S., Hwang, Y. W. and Wegiel, J. (2007) Trisomy-driven overexpression of DYRK1A kinase in the brain of subjects with Down syndrome. Neurosci. Lett. 413, 77-81 https://doi.org/10.1016/j.neulet.2006.11.026
- Kimura, R., Kamino, K., Yamamoto, M., Nuripa, A., Kida, T., Kazui, H., Hashimoto, R., Tanaka, T., Kudo, T., Yamagata, H., Tabara, Y., Miki, T., Akatsu, H., Kosaka, K., Funakoshi, E., Nishitomi, K., Sakaguchi, G., Kato, A., Hattori, H., Uema, T. and Takeda, M. (2007) The DYRK1A gene, encoded in chromosome 21 Down syndrome critical region, bridges between beta-amyloid production and tau phosphorylation in Alzheimer disease. Hum. Mol. Genet. 16, 15-23 https://doi.org/10.1093/hmg/ddl437
- Ryoo, S. R., Cho, H. J., Lee, H. W., Jeong, H. K., Radnaabazar, C., Kim, Y. S., Kim, M. J., Son, M. Y., Seo, H., Chung, S. H. and Song, W. J. (2008) Dual-specificity tyrosine(Y)-phosphorylation regulated kinase 1A-mediated phosphorylation of amyloid precursor protein: evidence for a functional link between Down syndrome and Alzheimer's disease. J. Neurochem. 104, 1333-1344 https://doi.org/10.1111/j.1471-4159.2007.05075.x
- Ryoo, S. R., Jeong, H. K., Radnaabazar, C., Yoo, J. J., Cho, H. J., Lee, H. W., Kim, I. S., Cheon, Y. H., Ahn, Y. S., Chung, S. H. and Song, W. J. (2007) DYRK1A-mediated hyperphosphorylation of Tau. A functional link between Down syndrome and Alzheimer disease. J. Biol. Chem. 282, 34850-34857 https://doi.org/10.1074/jbc.M707358200
- Ahn, K. J., Jeong, H. K., Choi, H. S., Ryoo, S. R., Kim, Y. J., Goo, J. S., Choi, S. Y., Han, J. S., Ha, I. and Song, W. J. (2006) DYRK1A BAC transgenic mice show altered synaptic plasticity with learning and memory defects. Neurobiol. Dis. 22, 463-472 https://doi.org/10.1016/j.nbd.2005.12.006
- Smith, D. J., Stevens, M. E., Sudanagunta, S. P., Bronson, R. T., Makhinson, M., Watabe, A. M., O'Dell, T. J., Fung, J., Weier, H. U., Cheng, J. F. and Rubin, E. M. (1997) Functional screening of 2 Mb of human chromosome 21q22.2 in transgenic mice implicates minibrain in learning defects associated with Down syndrome. Nat. Genet. 16, 28-36 https://doi.org/10.1038/ng0597-28
- Chang, L. and Karin, M. (2001) Mammalian MAP kinase signalling cascades. Nature 410, 37-40 https://doi.org/10.1038/35065000
- Roux, P. P. and Blenis, J. (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 68, 320-344 https://doi.org/10.1128/MMBR.68.2.320-344.2004
- Zhu, X., Lee, H. G., Raina, A. K., Perry, G. and Smith, M. A. (2002) The role of mitogen-activated protein kinase pathways in Alzheimer's disease. Neurosignals 11, 270- 281 https://doi.org/10.1159/000067426
- Pei, J. J., Braak, H., An, W. L., Winblad, B., Cowburn, R. F., Iqbal, K. and Grundke-Iqbal, I. (2002) Up-regulation of mitogen-activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer's disease. Brain Res. Mol. Brain Res. 109, 45-55 https://doi.org/10.1016/S0169-328X(02)00488-6
- Zhu, X., Raina, A. K., Lee, H. G., Chao, M., Nunomura, A., Tabaton, M., Petersen, R. B., Perry, G. and Smith, M. A. (2003) Oxidative stress and neuronal adaptation in Alzheimer disease: the role of SAPK pathways. Antioxid. Redox Signal. 5, 571-576 https://doi.org/10.1089/152308603770310220
- Otth, C., Mendoza-Naranjo, A., Mujica, L., Zambrano, A., Concha, II and Maccioni, R. B. (2003) Modulation of the JNK and p38 pathways by cdk5 protein kinase in a transgenic mouse model of Alzheimer's disease. Neuroreport 14, 2403-2409 https://doi.org/10.1097/00001756-200312190-00023
- Johnson, G. V. and Bailey, C. D. (2003) The p38 MAP kinase signaling pathway in Alzheimer's disease. Exp. Neurol. 183, 263-268 https://doi.org/10.1016/S0014-4886(03)00268-1
- Zhu, X., Rottkamp, C. A., Hartzler, A., Sun, Z., Takeda, A., Boux, H., Shimohama, S., Perry, G. and Smith, M. A. (2001) Activation of MKK6, an upstream activator of p38, in Alzheimer's disease. J. Neurochem. 79, 311-318 https://doi.org/10.1046/j.1471-4159.2001.00597.x
- Zhu, X., Ogawa, O., Wang, Y., Perry, G. and Smith, M. A. (2003) JKK1, an upstream activator of JNK/SAPK, is activated in Alzheimer's disease. J. Neurochem. 85, 87-93 https://doi.org/10.1046/j.1471-4159.2003.01645.x
- Reynolds, C. H., Nebreda, A. R., Gibb, G. M., Utton, M. A. and Anderton, B. H. (1997) Reactivating kinase/p38 phosphorylates tau protein in vitro. J. Neurochem. 69, 191-198 https://doi.org/10.1046/j.1471-4159.1997.69010191.x
- Reynolds, C. H., Utton, M. A., Gibb, G. M., Yates, A. and Anderton, B. H. (1997) Stress-activated protein kinase/ c-jun N-terminal kinase phosphorylates tau protein. J. Neurochem. 68, 1736-1744 https://doi.org/10.1046/j.1471-4159.1997.68041736.x
- Ledesma, M. D., Correas, I., Avila, J. and Diaz-Nido, J. (1992) Implication of brain cdc2 and MAP2 kinases in the phosphorylation of tau protein in Alzheimer's disease. FEBS Lett. 308, 218-224 https://doi.org/10.1016/0014-5793(92)81278-T
- Savage, M. J., Lin, Y. G., Ciallella, J. R., Flood, D. G. and Scott, R. W. (2002) Activation of c-Jun N-terminal kinase and p38 in an Alzheimer's disease model is associated with amyloid deposition. J. Neurosci. 22, 3376-3385
- Yasojima, K., Kuret, J., DeMaggio, A. J., McGeer, E. and McGeer, P. L. (2000) Casein kinase 1 d mRNA is upregulated in Alzheimer disease brain. Brain Res. 865, 116-120 https://doi.org/10.1016/S0006-8993(00)02200-9
- Walter, J., Fluhrer, R., Hartung, B., Willem, M., Kaether, C., Capell, A., Lammich, S., Multhaup, G. and Haass, C. (2001) Phosphorylation regulates intracellular trafficking of b-secretase. J. Biol. Chem. 276, 14634-14641 https://doi.org/10.1074/jbc.M011116200
- Flajolet, M., He, G., Heiman, M., Lin, A., Nairn, A. C. and Greengard, P. (2007) Regulation of Alzheimer's disease amyloid-b formation by casein kinase I. Proc. Natl. Acad. Sci. U S A 104, 4159-4164 https://doi.org/10.1073/pnas.0611236104
- Ksiezak-Reding, H., Pyo, H. K., Feinstein, B. and Pasinetti, G. M. (2003) Akt/PKB kinase phosphorylates separately Thr212 and Ser214 of tau protein in vitro. Biochim. Biophys. Acta. 1639, 159-168 https://doi.org/10.1016/j.bbadis.2003.09.001
- Pei, J. J., Khatoon, S., An, W. L., Nordlinder, M., Tanaka, T., Braak, H., Tsujio, I., Takeda, M., Alafuzoff, I., Winblad, B., Cowburn, R. F., Grundke-Iqbal, I. and Iqbal, K. (2003) Role of protein kinase B in Alzheimer's neurofibrillary pathology. Acta. Neuropathol. 105, 381-392
- Rickle, A., Bogdanovic, N., Volkman, I., Winblad, B., Ravid, R. and Cowburn, R. F. (2004) Akt activity in Alzheimer's disease and other neurodegenerative disorders. Neuroreport 15, 955-959 https://doi.org/10.1097/00001756-200404290-00005
- Griffin, R. J., Moloney, A., Kelliher, M., Johnston, J. A., Ravid, R., Dockery, P., O'Connor, R. and O'Neill, C. (2005) Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer's disease pathology. J. Neurochem. 93, 105-117 https://doi.org/10.1111/j.1471-4159.2004.02949.x
- Liang, Z., Liu, F., Grundke-Iqbal, I., Iqbal, K. and Gong, C. X. (2007) Down-regulation of cAMP-dependent protein kinase by over-activated calpain in Alzheimer disease brain. J. Neurochem. 103, 2462-2470 https://doi.org/10.1111/j.1471-4159.2007.04942.x
- Kim, S. H., Nairn, A. C., Cairns, N. and Lubec, G. (2001) Decreased levels of ARPP-19 and PKA in brains of Down syndrome and Alzheimer's disease. J. Neural Transm. Suppl. 61, 263-272
- Wang, L., Shim, H., Xie, C. and Cai, H. (2008) Activation of protein kinase C modulates BACE1-mediated beta-secretase activity. Neurobiol. Aging 29, 357-367 https://doi.org/10.1016/j.neurobiolaging.2006.11.001
- Buxbaum, J. D., Gandy, S. E., Cicchetti, P., Ehrlich, M. E., Czernik, A. J., Fracasso, R. P., Ramabhadran, T. V., Unterbeck, A. J. and Greengard, P. (1990) Processing of Alzheimer beta/A4 amyloid precursor protein: modulation by agents that regulate protein phosphorylation. Proc. Natl. Acad. Sci. U S A 87, 6003-6006 https://doi.org/10.1073/pnas.87.15.6003
- Tian, Q. and Wang, J. (2002) Role of serine/threonine protein phosphatase in Alzheimer's disease. Neurosignals 11, 262-269 https://doi.org/10.1159/000067425
- Gong, C. X., Grundke-Iqbal, I. and Iqbal, K. (1994) Dephosphorylation of Alzheimer's disease abnormally phosphorylated tau by protein phosphatase-2A. Neuroscience 61, 765-772 https://doi.org/10.1016/0306-4522(94)90400-6
- Gong, C. X., Grundke-Iqbal, I., Damuni, Z. and Iqbal, K. (1994) Dephosphorylation of microtubule-associated protein tau by protein phosphatase-1 and -2C and its implication in Alzheimer disease. FEBS Lett. 341, 94-98 https://doi.org/10.1016/0014-5793(94)80247-5
- Liu, F., Grundke-Iqbal, I., Iqbal, K. and Gong, C. X. (2005) Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur. J. Neurosci. 22, 1942-1950 https://doi.org/10.1111/j.1460-9568.2005.04391.x
- Liu, F., Iqbal, K., Grundke-Iqbal, I., Rossie, S. and Gong, C. X. (2005) Dephosphorylation of tau by protein phosphatase 5: impairment in Alzheimer's disease. J. Biol. Chem. 280, 1790-1796 https://doi.org/10.1074/jbc.M410775200
- Gong, C. X., Singh, T. J., Grundke-Iqbal, I. and Iqbal, K. (1993) Phosphoprotein phosphatase activities in Alzheimer disease brain. J. Neurochem. 61, 921-927 https://doi.org/10.1111/j.1471-4159.1993.tb03603.x
- Vogelsberg-Ragaglia, V., Schuck, T., Trojanowski, J. Q. and Lee, V. M. (2001) PP2A mRNA expression is quantitatively decreased in Alzheimer's disease hippocampus. Exp. Neurol. 168, 402-412 https://doi.org/10.1006/exnr.2001.7630
- Liu, F., Grundke-Iqbal, I., Iqbal, K., Oda, Y., Tomizawa, K. and Gong, C. X. (2005) Truncation and activation of calcineurin A by calpain I in Alzheimer disease brain. J. Biol. Chem. 280, 37755-37762 https://doi.org/10.1074/jbc.M507475200
- Gong, C. X. and Iqbal, K. (2008) Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr. Med. Chem. 15, 2321-2328 https://doi.org/10.2174/092986708785909111
- Tanimukai, H., Grundke-Iqbal, I. and Iqbal, K. (2005) Up-regulation of inhibitors of protein phosphatase-2A in Alzheimer's disease. Am. J. Pathol. 166, 1761-1771 https://doi.org/10.1016/S0002-9440(10)62486-8
- Ducruet, A. P., Vogt, A., Wipf, P. and Lazo, J. S. (2005) Dual specificity protein phosphatases: therapeutic targets for cancer and Alzheimer's disease. Annu. Rev. Pharmacol. Toxicol. 45, 725-750 https://doi.org/10.1146/annurev.pharmtox.45.120403.100040
- Vincent, I., Bu, B., Hudson, K., Husseman, J., Nochlin, D. and Jin, L. (2001) Constitutive Cdc25B tyrosine phosphatase activity in adult brain neurons with M phase-type alterations in Alzheimer's disease. Neuroscience 105, 639-650 https://doi.org/10.1016/S0306-4522(01)00219-6
- Ding, X. L., Husseman, J., Tomashevski, A., Nochlin, D., Jin, L. W. and Vincent, I. (2000) The cell cycle Cdc25A tyrosine phosphatase is activated in degenerating postmitotic neurons in Alzheimer's disease. Am. J. Pathol. 157, 1983-1990 https://doi.org/10.1016/S0002-9440(10)64837-7
- Rickle, A., Bogdanovic, N., Volkmann, I., Zhou, X., Pei, J. J., Winblad, B. and Cowburn, R. F. (2006) PTEN levels in Alzheimer's disease medial temporal cortex. Neurochem Int. 48, 114-123 https://doi.org/10.1016/j.neuint.2005.08.014
- Selkoe, D. J. (1991) The molecular pathology of Alzheimer's disease. Neuron 6, 487-498 https://doi.org/10.1016/0896-6273(91)90052-2
- Kopke, E., Tung, Y. C., Shaikh, S., Alonso, A. C., Iqbal, K. and Grundke-Iqbal, I. (1993) Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J. Biol. Chem. 268, 24374-24384
- Giese, K. P. (2009) GSK-3: a key player in neurodegeneration and memory. IUBMB Life 61, 516-521 https://doi.org/10.1002/iub.187
- Johnson, G. V. (2006) Tau phosphorylation and proteolysis: insights and perspectives. J. Alzheimers Dis. 9, 243- 250
- Bielska, A. A. and Zondlo, N. J. (2006) Hyperphosphorylation of tau induces local polyproline II helix. Biochemistry 45, 5527-5537 https://doi.org/10.1021/bi052662c
- Gong, C. X., Liu, F., Grundke-Iqbal, I. and Iqbal, K. (2006) Dysregulation of protein phosphorylation/ dephosphorylation in Alzheimer's disease: a therapeutic target. J. Biomed. Biotechnol. 2006, 31825
- Stoothoff, W. H. and Johnson, G. V. (2005) Tau phosphorylation: physiological and pathological consequences. Biochim. Biophys. Acta. 1739, 280-297 https://doi.org/10.1016/j.bbadis.2004.06.017
- Mazanetz, M. P. and Fischer, P. M. (2007) Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat. Rev. Drug Discov. 6, 464-479 https://doi.org/10.1038/nrd2111
- Johnson, G. V. and Stoothoff, W. H. (2004) Tau phosphorylation in neuronal cell function and dysfunction. J. Cell Sci. 117, 5721-5729 https://doi.org/10.1242/jcs.01558
- Russo, C., Venezia, V., Repetto, E., Nizzari, M., Violani, E., Carlo, P. and Schettini, G. (2005) The amyloid precursor protein and its network of interacting proteins: physiological and pathological implications. Brain Res. Rev. 48, 257-264 https://doi.org/10.1016/j.brainresrev.2004.12.016
- Gandy, S. E., Caporaso, G. L., Buxbaum, J. D., de Cruz Silva, O., Iverfeldt, K., Nordstedt, C., Suzuki, T., Czernik, A. J., Nairn, A. C. and Greengard, P. (1993) Protein phosphorylation regulates relative utilization of processing pathways for Alzheimer beta/A4 amyloid precursor protein. Ann. N. Y. Acad. Sci. 695, 117-121 https://doi.org/10.1111/j.1749-6632.1993.tb23038.x
- Lee, M. S., Kao, S. C., Lemere, C. A., Xia, W., Tseng, H. C., Zhou, Y., Neve, R., Ahlijanian, M. K. and Tsai, L. H. (2003) APP processing is regulated by cytoplasmic phosphorylation. J. Cell Biol. 163, 83-95 https://doi.org/10.1083/jcb.200301115
- Kimberly, W. T., Zheng, J. B., Town, T., Flavell, R. A. and Selkoe, D. J. (2005) Physiological regulation of the beta- amyloid precursor protein signaling domain by c-Jun N-terminal kinase JNK3 during neuronal differentiation. J. Neurosci. 25, 5533-5543 https://doi.org/10.1523/JNEUROSCI.4883-04.2005
- Pastorino, L. and Lu, K. P. (2004) Phosphorylation of the amyloid precursor protein (APP): is this a mechanism in favor or against Alzheimer's disease? Neurosci. Res. Comm. 35, 213-231 https://doi.org/10.1002/nrc.20035
- Standen, C. L., Brownlees, J., Grierson, A. J., Kesavapany, S., Lau, K. F., McLoughlin, D. M. and Miller, C. C. (2001) Phosphorylation of thr (668) in the cytoplasmic domain of the Alzheimer's disease amyloid precursor protein by stress-activated protein kinase 1b (Jun N-terminal kinase- 3). J. Neurochem. 76, 316-320 https://doi.org/10.1046/j.1471-4159.2001.00102.x
- Ramelot, T. A. and Nicholson, L. K. (2001) Phosphorylation- induced structural changes in the amyloid precursor protein cytoplasmic tail detected by NMR. J. Mol. Biol. 307, 871-884 https://doi.org/10.1006/jmbi.2001.4535
- Sano, Y., Nakaya, T., Pedrini, S., Takeda, S., Iijima-Ando, K., Iijima, K., Mathews, P. M., Itohara, S., Gandy, S. and Suzuki, T. (2006) Physiological mouse brain Abeta levels are not related to the phosphorylation state of threonine- 668 of Alzheimer's APP. PLoS ONE 1, e51 https://doi.org/10.1371/journal.pone.0000051
- Suzuki, T. and Nakaya, T. (2008) Regulation of amyloid beta-protein precursor by phosphorylation and protein interactions. J. Biol. Chem. 283, 29633-29637 https://doi.org/10.1074/jbc.R800003200
- Laudon, H., Hansson, E. M., Melen, K., Bergman, A., Farmery, M. R., Winblad, B., Lendahl, U., von Heijne, G. and Naslund, J. (2005) A nine-transmembrane domain topology for presenilin 1. J. Biol. Chem. 280, 35352- 35360 https://doi.org/10.1074/jbc.M507217200
- Parks, A. L. and Curtis, D. (2007) Presenilin diversifies its portfolio. Trends Genet. 23, 140-150 https://doi.org/10.1016/j.tig.2007.01.008
- Verdile, G., Gandy, S. E. and Martins, R. N. (2007) The role of presenilin and its interacting proteins in the biogenesis of Alzheimer's beta amyloid. Neurochem. Res. 32, 609-623 https://doi.org/10.1007/s11064-006-9131-x
- Spasic, D. and Annaert, W. (2008) Building gamma-secretase: the bits and pieces. J. Cell Sci. 121, 413-420 https://doi.org/10.1242/jcs.015255
- Kirschenbaum, F., Hsu, S. C., Cordell, B. and McCarthy, J. V. (2001) Substitution of a glycogen synthase kinase-3b phosphorylation site in presenilin 1 separates presenilin function from b-catenin signaling. J. Biol. Chem. 276, 7366-7375 https://doi.org/10.1074/jbc.M004697200
- Kirschenbaum, F., Hsu, S. C., Cordell, B. and McCarthy, J. V. (2001) Glycogen synthase kinase-3b regulates presenilin 1 C-terminal fragment levels. J. Biol. Chem. 276, 30701-30707 https://doi.org/10.1074/jbc.M102849200
- Fluhrer, R., Friedlein, A., Haass, C. and Walter, J. (2004) Phosphorylation of presenilin 1 at the caspase recognition site regulates its proteolytic processing and the progression of apoptosis. J. Biol. Chem. 279, 1585-1593 https://doi.org/10.1074/jbc.M306653200
- Kim, S. K., Park, H. J., Hong, H. S., Baik, E. J., Jung, M. W. and Mook-Jung, I. (2006) ERK1/2 is an endogenous negative regulator of the gamma-secretase activity. FASEB J. 20, 157-159 https://doi.org/10.1096/fj.05-4055fje
- Kuo, L. H., Hu, M. K., Hsu, W. M., Tung, Y. T., Wang, B. J., Tsai, W. W., Yen, C. T. and Liao, Y. F. (2008) Tumor necrosis factor-alpha-elicited stimulation of gamma-secretase is mediated by c-Jun N-terminal kinase-dependent phosphorylation of presenilin and nicastrin. Mol. Biol. Cell 19, 4201-4212 https://doi.org/10.1091/mbc.E07-09-0987
- Baki, L., Shioi, J., Wen, P., Shao, Z., Schwarzman, A., Gama-Sosa, M., Neve, R. and Robakis, N. K. (2004) PS1 activates PI3K thus inhibiting GSK-3 activity and tau overphosphorylation: effects of FAD mutations. EMBO J. 23, 2586-2596 https://doi.org/10.1038/sj.emboj.7600251
- Bhat, R. V., Budd Haeberlein, S. L. and Avila, J. (2004) Glycogen synthase kinase 3: a drug target for CNS therapies. J. Neurochem. 89, 1313-1317 https://doi.org/10.1111/j.1471-4159.2004.02422.x
- Glicksman, M. A., Cuny, G. D., Liu, M., Dobson, B., Auerbach, K., Stein, R. L. and Kosik, K. S. (2007) New approaches to the discovery of cdk5 inhibitors. Curr. Alzheimer Res. 4, 547-549 https://doi.org/10.2174/156720507783018181
Cited by
- Zooming into protein oligomerization in neurodegeneration using BiFC vol.35, pp.11, 2010, https://doi.org/10.1016/j.tibs.2010.05.007
- Tauopathy Differentially Affects Cell Adhesion Molecules in Mouse Brain: Early Down-Regulation of Nectin-3 in Stratum Lacunosum Moleculare vol.8, pp.5, 2013, https://doi.org/10.1371/journal.pone.0063589
- Tau protein phosphatases in Alzheimer's disease: The leading role of PP2A vol.12, pp.1, 2013, https://doi.org/10.1016/j.arr.2012.06.008
- Alkaloids enriched extract from Dendrobium nobile Lindl. attenuates tau protein hyperphosphorylation and apoptosis induced by lipopolysaccharide in rat brain vol.21, pp.5, 2014, https://doi.org/10.1016/j.phymed.2013.10.026
- Aberrant protein phosphorylation in Alzheimer disease brain disturbs pro-survival and cell death pathways vol.1862, pp.10, 2016, https://doi.org/10.1016/j.bbadis.2016.07.005
- An effective treatment for Alzheimer's disease must consider both amyloid and tau vol.7, pp.0, 2014, https://doi.org/10.1093/biohorizons/hzu002
- Protein Kinase Activity Decreases with Higher Braak Stages of Alzheimer’s Disease Pathology vol.49, pp.4, 2015, https://doi.org/10.3233/JAD-150429
- In vitro mitochondrial failure and oxidative stress mimic biochemical features of Alzheimer disease vol.63, pp.2, 2013, https://doi.org/10.1016/j.neuint.2013.05.005
- β1-adrenergic receptor activation enhances memory in Alzheimer's disease model vol.1, pp.5, 2014, https://doi.org/10.1002/acn3.57
- Accumulation of the SET protein in HEK293T cells and mild oxidative stress: cell survival or death signaling vol.363, pp.1-2, 2012, https://doi.org/10.1007/s11010-011-1158-x
- Axonal degeneration in Alzheimer's disease: When signaling abnormalities meet the axonal transport system vol.246, 2013, https://doi.org/10.1016/j.expneurol.2012.06.003
- Long-term effects of ionising radiation on the brain: cause for concern? vol.52, pp.1, 2013, https://doi.org/10.1007/s00411-012-0436-7
- Intracerebroventricular Streptozotocin as a Model of Alzheimer’s Disease: Neurochemical and Behavioral Characterization in Mice vol.31, pp.3, 2017, https://doi.org/10.1007/s12640-016-9684-7
- Allergy influences the inflammatory status of the brain and enhances tau-phosphorylation vol.16, pp.10, 2012, https://doi.org/10.1111/j.1582-4934.2012.01556.x
- Protein Phosphorylation is a Key Mechanism in Alzheimer’s Disease vol.58, pp.4, 2017, https://doi.org/10.3233/JAD-170176
- Quantitative proteomics analysis of phosphorylated proteins in the hippocampus of Alzheimer's disease subjects vol.74, pp.7, 2011, https://doi.org/10.1016/j.jprot.2011.03.033
- How wine polyphenols can fight Alzheimer disease progression: towards a molecular explanation vol.71, pp.20, 2015, https://doi.org/10.1016/j.tet.2014.06.091
- SNPs Associated with Cerebrospinal Fluid Phospho-Tau Levels Influence Rate of Decline in Alzheimer's Disease vol.6, pp.9, 2010, https://doi.org/10.1371/journal.pgen.1001101
- Dyrk1A-mediated phosphorylation of Presenilin 1: a functional link between Down syndrome and Alzheimer’s disease vol.115, pp.3, 2010, https://doi.org/10.1111/j.1471-4159.2010.06769.x
- Prediction of functional phosphorylation sites by incorporating evolutionary information vol.3, pp.9, 2012, https://doi.org/10.1007/s13238-012-2048-z
- Our “energy-Ca2+ signaling deficits†hypothesis and its explanatory potential for key features of Alzheimer’s disease vol.6, 2014, https://doi.org/10.3389/fnagi.2014.00329
- Calpastatin modulates APP processing in the brains of β-amyloid depositing but not wild-type mice vol.33, pp.6, 2012, https://doi.org/10.1016/j.neurobiolaging.2011.11.023
- The ε3 and ε4 Alleles of Human APOE Differentially Affect Tau Phosphorylation in Hyperinsulinemic and Pioglitazone Treated Mice vol.6, pp.2, 2011, https://doi.org/10.1371/journal.pone.0016991
- The organic cation transporter 3 (OCT3) as molecular target of psychotropic drugs: transport characteristics and acute regulation of cloned murine OCT3 vol.466, pp.3, 2014, https://doi.org/10.1007/s00424-013-1335-8
- Neuroprotective effects of Arctium lappa L. roots against glutamate-induced oxidative stress by inhibiting phosphorylation of p38, JNK and ERK 1/2 MAPKs in PC12 cells vol.38, pp.1, 2014, https://doi.org/10.1016/j.etap.2014.05.017
- Preferential Selectivity of Inhibitors with Human Tau Protein Kinase Gsk3 Elucidates Their Potential Roles for Off-Target Alzheimer’s Therapy vol.2013, 2013, https://doi.org/10.1155/2013/809386
- Aβ Influences Cytoskeletal Signaling Cascades with Consequences to Alzheimer’s Disease vol.52, pp.3, 2015, https://doi.org/10.1007/s12035-014-8913-4
- Haloperidol inactivates AMPK and reduces tau phosphorylation in a tau mouse model of Alzheimer's disease vol.2, pp.2, 2016, https://doi.org/10.1016/j.trci.2016.05.003
- Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer's disease transgenic mouse model vol.33, pp.12, 2012, https://doi.org/10.1016/j.neurobiolaging.2012.02.016
- Intracellular signal transduction as a factor in the development of “Smart” biomaterials for bone tissue engineering vol.108, pp.6, 2011, https://doi.org/10.1002/bit.23117
- BRI2 and BRI3 are functionally distinct phosphoproteins vol.28, pp.1, 2016, https://doi.org/10.1016/j.cellsig.2015.10.012
- The neuroprotective effects of Lonicera japonica THUNB. against hydrogen peroxide-induced apoptosis via phosphorylation of MAPKs and PI3K/Akt in SH-SY5Y cells vol.49, pp.4, 2011, https://doi.org/10.1016/j.fct.2011.01.008
- Altered protein phosphorylation as a resource for potential AD biomarkers vol.6, pp.1, 2016, https://doi.org/10.1038/srep30319
- Prediction of phosphorylation sites based on Krawtchouk image moments vol.85, pp.12, 2017, https://doi.org/10.1002/prot.25388
- Mutual Relationship between Tau and Central Insulin Signalling: Consequences for AD and Tauopathies? vol.107, pp.2, 2018, https://doi.org/10.1159/000487641
- Trace element analysis of hairs in patients with dementia vol.17, pp.2, 2010, https://doi.org/10.1107/S0909049509055319