Removal Torque of Mg-ion Implanted Clinical Implants with Plasma Source Ion Implantation Method

마그네슘 이온주입 임플란트의 뒤틀림 제거력에 관한 연구

  • Kim, Bo-Hyoun (Dept. of Prosthodontics & Research Institute of Oral Science, College of Dentistry, National University of Kangnung-Wonju) ;
  • Kim, Dae-Gon (Dept. of Prosthodontics & Research Institute of Oral Science, College of Dentistry, National University of Kangnung-Wonju) ;
  • Park, Chan-Jin (Dept. of Prosthodontics & Research Institute of Oral Science, College of Dentistry, National University of Kangnung-Wonju) ;
  • Cho, Lee-Ra (Dept. of Prosthodontics & Research Institute of Oral Science, College of Dentistry, National University of Kangnung-Wonju)
  • 김보현 (강릉원주대학교 치과대학 보철학교실 및 구강과학연구소) ;
  • 김대곤 (강릉원주대학교 치과대학 보철학교실 및 구강과학연구소) ;
  • 박찬진 (강릉원주대학교 치과대학 보철학교실 및 구강과학연구소) ;
  • 조리라 (강릉원주대학교 치과대학 보철학교실 및 구강과학연구소)
  • Received : 2009.01.20
  • Accepted : 2009.03.25
  • Published : 2009.03.31

Abstract

The surface treatment of titanium implant could bring out the biochemical bonding between bone and implant. The purpose of this study was to evaluate the biomechanical bone response of Mg-ion implanted implants with plasma source ion implantation method. Twelve New Zealand white rabbits were included in this study. Each rabbit received one control fixture (blasted with resorbable blasting media, RBM) and three types of Mg ion implanted fixtures in tibiae. The implants were left in place for 6 weeks before the rabbits were sacrificed. Removal torque value and resonance frequency analysis (ISQ) were compared. The repeated measured analysis of variance was used with $P{\leq}0.05$ as level of statistical significance. ISQ was not different among all groups. However, the ISQ was increased after 6 weeks healing. The group had lowest ISQ value showed the greatest increment. Mg-1 implants with 9.4% retained ion dose showed significantly higher removal torque value than that of the other implants. From this results, it is concluded that the Mg-1 implants has stronger bone response than control RBM surface implant.

골과 임플란트의 기계적인 결합을 증진시키기 위한 다양한 시도가 이루어졌으며, 최근에는 불소 부식법, 양극산화법, 이온주입법 등 생화학적인 골유착을 유도할 수 있는 임플란트의 표면개질이 관심의 대상이 되고 있다. 본 연구는 플라즈마 상태의 이온을 임플란트 표면에 주입하여 이온 피막을 형성하는 방법(plasma source ion implantion, PSII)으로 표면을 개질한 임플란트에 대한 골반응을 흡수성 재료로 블라스팅 처리(resorbable blasting media, RBM)된 임플란트를 대조군으로 하여 평가하고 이온 주입량을 달리하여 비교한 결과를 알아보고자 하였다. 12마리의 뉴질랜드 가토의 경골에 대조군인 RBM 임플란트와 Mg이온 주입량을 달리한 Mg이온주입 임플란트 3개씩을 식립하고 공진주파수를 측정하였으며 6주 후 48개 임플란트의 뒤틀림 제거력과 공진주파수를 측정하였다. 반복측정이 있는 분산분석을 이용하여 95% 유의수준으로 통계적 유의성을 확인하여 다음과 같은 결과를 얻었다. 1. 각 임플란트간 공진주파수의 차이는 없었으나 군에 관계없이 식립 시에 비해 6주 후의 공진주파수는 증가하였다. 2. 초기 낮은 공진주파수를 나타낸 임플란트군의 공진주파수 증가량이 큰 경향을 나타내었다. 3. 이온잔존량 9.4%인 Mg 1 임플란트가 다른 임플란트 보다 통계적으로 유의하게 큰 뒤틀림제거력을 보였다. 이상의 결과를 종합하여 가장 우수한 골반응을 나타내는 이온주입량을 알 수 있었으며 이러한 이온주입 임플란트가 임상적으로 뛰어난 효능을 보이는 RBM 표면에 비해서도 생물학적 골반응이 더 우수하다는 것을 입증하는 결과라 할 수 있다.

Keywords

References

  1. Albrektsson T, Wennerberg A. The impact of oral implants - past and future. 1966-2042 J Can Dent Assoc 2005;71:327
  2. Trisi P, Lazzara R, Rebaudi A, Rao W, Testori T, Porter SS. Bone-implant contact on machined and dual acid-etched surfaces after 2 months of healing in the human maxilla. J Periodontol 2003;74:945–956 https://doi.org/10.1902/jop.2003.74.7.945
  3. Wennerberg A, Albrektsson T, Albrektsson B, Krol JJ. Histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies. Clin Oral Implant Res 1996; 6:24–30 https://doi.org/10.1034/j.1600-0501.1995.060103.x
  4. Piatelli M, Scarano A, Paolantonio M, Iezzi G, Petrone G, Piatelli A. Bone response to machined and resorbable blast material titanium implants: an experimental study in rabbits. J Oral Implantol 2002;28:2–88 https://doi.org/10.1563/1548-1336(2002)028<0002:BRTMAR>2.3.CO;2
  5. Mueller WD, Gross U, Fritz T, Voigt C, Fischer P, Berger G. Evaluation of the interface between bone and titanium surfaces being blasted by aluminium oxide or bioceramic particles. Clin Oral Implants Res 2003;3:349-356
  6. Sul YT, Johansson CB, Jeong Y, Wennerberg A, Albrektsson T. Resonance frequency and removal torque analysis of implants with turned and anodized surface oxides. Clin Oral Implants Res 2002;13:252-259 https://doi.org/10.1034/j.1600-0501.2002.130304.x
  7. Kim HM, Miyaji F, Kokubo T, Nakamura T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res. 1996 ;32:409-417 https://doi.org/10.1002/(SICI)1097-4636(199611)32:3<409::AID-JBM14>3.0.CO;2-B
  8. Ellingsen JE, Johansson CB, Wennerberg A, Holmen A. Improved retention and bone-to-implant contact with fluoride-modified titanium implants. Int J Oral Maxillofac Implants 2004;19:659-666
  9. Byon E, Moon S, Cho S, Jeong C, Jeong Y, Sul YT. Electrochemical property and apatite formation of metal ion implanted titanium for medical implants Surf. Coat. Technol. 2005; 200: 1018-1021 https://doi.org/10.1016/j.surfcoat.2005.02.133
  10. Maitz MF, Poon RW, Liu XY, Pham MT, Chu PK. Bioactivity of titanium following sodium plasma immersion ion implantation and deposition. Biomaterials. 2005; 26:5465-5473 https://doi.org/10.1016/j.biomaterials.2005.02.006
  11. Johansson C, Lausmaa J, Rostlund T, Thomsen P. Commercially pure titamium and Ti6Al4V implants with and without nigrogen ion-implantation: surface characterization and quantitative studies in rabbit cortical bone. J Mater Sci-Mater Med 1993;4: 132-141 https://doi.org/10.1007/BF00120382
  12. Sawase T, Wennerberg A, Baba K, Tsuboi Y, Sennerby L, Johansson CB, Albrektsson T.Application of oxygen ion implantation to titanium surfaces: effects on surface characteristics, corrosion resistance, and bone response.Clin Implant Dent Relat Res. 2001;3:221-229 https://doi.org/10.1111/j.1708-8208.2001.tb00144.x
  13. Hanawa T, Kamiura Y, Yamamoto S, Kohgo T, Amemiya A, Ukai H, Murakami K, Asaoka K. Early bone formation around calcium-ion-implanted titanium inserted into rat tibia. J Biomed Mater Res 1997;36:131-136 https://doi.org/10.1002/(SICI)1097-4636(199707)36:1<131::AID-JBM16>3.0.CO;2-L
  14. Mändl S, Krause D, Thorwarth G, Sader R, Zeihofer F, Horch HH, Rauschenbach B. Plasma immersion ion implantation treatment of medical implants. Surf Coat Tech 2001; 142:1046-1050 https://doi.org/10.1016/S0257-8972(01)01066-0
  15. Gailit J, Ruoslahti E. Regulation of the fibronectin receptor affinity by divalent cations. J Biol Chem 1988;263:12927-12932
  16. Mould AP, Akiyama SK, Humphries MJ. Regulation of integrin alpha 5 beta 1-fibronectin interactions by divalent cations. Evidence for distinct classes of binding sites for Mn2+,Mg2+,andCa2+.JBiolChem 1996;270:26270-26277 https://doi.org/10.1074/jbc.270.44.26270
  17. Krause A, Cowles EA, Gronowicz G. Integrin- mediated signaling in osteoblasts on titanium implant materials. J Biomed Mater Res 2000;52:738-747 https://doi.org/10.1002/1097-4636(20001215)52:4<738::AID-JBM19>3.0.CO;2-F
  18. Sul YT, Johansson P, Chang BS, Jeong BY. Bone tissue responses to Mg-incorporated oxidized implants and machine-turned implants in the rabbit femur. J of appl Biomaterials and Biomechanics 2005;3:18-28
  19. Parise LV, Phillips DR. Fibronectin-binding properties of the purified platelet glycoprotein Ⅱb-Ⅲa comples. J Biol Chem 1986;261:14011-14017
  20. Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, Shakibaei M. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 2002;62:175-184 https://doi.org/10.1002/jbm.10270
  21. Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford J, Dean DD, Cochran D, Boyan BD. Effect of titanium surface-roughness on proliferation, differentiation, and protein-synthesis of human osteoblast-like cells(MG63). J Biomed Mater Res 1995;29:389-401 https://doi.org/10.1002/jbm.820290314
  22. Howlett CR, Zreiqat H, Odell R, Noorman J, Evan P, DaltonBA, Mcfarland C, Steele JG.The effect of magnesium ion implantation into alumina upon the adhesion of human bone-derived cells. J Mater Sci-Mater Med 1994;5:715-722 https://doi.org/10.1007/BF00120363
  23. Norman GR, Streiner DL. Biostatistics, The bare essentials. Mosby. St. Louis, 1994. Chap. 11 repeated-Measures ANOVA. 88-94
  24. Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont 1998;11: 491-501
  25. Friberg, B., Sennerby, L., Linde'n, B., Grondahl, K. & Lekholm,U. Stability measurements of one-stage Branemark implants during healing in mandibles. A clinical resonance frequency study. Int J Oral Maxillofac Surg 1999:28;266–272 https://doi.org/10.1016/S0901-5027(99)80156-8
  26. Sennerby, L., Thomsen, P. & Ericson, L.E. Ultrastructure of the bone–titanium interface in rabbits. Journal of Materials Science: Materials in Medicine 1992;3:262–271 https://doi.org/10.1007/BF00705291