DOI QR코드

DOI QR Code

Globotriaosylceramide (Gb3) content in HeLa cells is correlated to Shiga toxin-induced cytotoxicity and Gb3 synthase expression

  • Shin, In-Sun (College of animal Life Sciences, Kangwon National University) ;
  • Ishii, Satoshi (Department of Agriculture and Life Sciences, Obihiro University of Agriculture and Veterinary Medicine) ;
  • Shin, Jong-Seo (College of animal Life Sciences, Kangwon National University) ;
  • Sung, Kyong-Il (College of animal Life Sciences, Kangwon National University) ;
  • Park, Byung-Sung (College of animal Life Sciences, Kangwon National University) ;
  • Jang, Hyun-Yong (College of animal Life Sciences, Kangwon National University) ;
  • Kim, Byong-Wan (College of animal Life Sciences, Kangwon National University)
  • Published : 2009.05.31

Abstract

Globotriaosylceramide (Gb3) and globotetraosylceramide (Gb4) are the proposed functional receptors for Shiga toxin (Stx). To elucidate the effect of Gb3 content on Stx-induced cytotoxicity in HeLa cells, we cloned HeLa cells and determined the correlation between glycolipids content and Stx-induced cytotoxicity. The 29 HeLa cell clone (HLCC) lines used showed a wide range of sensitivity to Stx, compared to Gb3-rich cells which were more sensitive, showing as little as 20% viability to 100 pg/ml Stx. In contrast, Gb3-deficient cells proved resistant as they were more than 80% viable to 100 ng/ml Stx. Gb3 content in the HLCC lines corresponded with Stxs-induced cytotoxicity as well as Gb3 synthase expression, but no correlation with Gb4 content was noted. These data show that Gb3 content, which is regulated by the expression of Gb3 synthase, determines the sensitivity of HeLa cells toward Stx.

Keywords

References

  1. Riley, L. W., Remis, R. S., Helgerson, S. D., McGee, H. B., Wells, J. G., Davis, B. R., Hebert, R. J., Olcott, E. S., Johnson, L. M., Hargett, N. T., Blake, P. A. and Cohen, M. L. (1983) Hemorrhagic colitis associated with a rare Escherichia coli serotype. N. Engl. J. Med. 308, 681-685 https://doi.org/10.1056/NEJM198303243081203
  2. Robson, W. L. M., Leung, A. K. C. and Kaplan, B. S. (1993) Hemolytic-uremic syndrome. Curr. Probl. Pediatr. 23, 16-33 https://doi.org/10.1016/0045-9380(93)90027-A
  3. Kozlov, Y. V., Kabishev, A. A., Lukyanov, E. V. and Bayev, A. A. (1988) The primary structure of the operons coding for Shigella dysenteriae toxin and temperature phage H30 shiga-like toxin. Gene 67, Gene
  4. Strockbine, N. A., Marques, L. R. M., Newland, J. W., Smith, H. W., Holmes, R. K. and O'Brien, A. D. (1986) Two toxin-converting phages from Escherichia coli O157: H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infect. Immun. 53, 135-140
  5. Jackson, M. P, Neill, R. J., O’Brien, A. D., Holmes, R. K. and Newland, J. W. (1987) Nucleotide sequence analysis and comparison of the structural genes for Shiga-like toxin I and Shiga-like toxine II encoded by bacteriophages form Escherichia coli 933. FEMS Microbiol. Lett. 44, 109-114 https://doi.org/10.1111/j.1574-6968.1987.tb02252.x
  6. Tesh, V. L., Burris, J. A., Owens, J. W., Gordon, V. M., Wadolkowski, E. A., O'Brien, A. D. and Samuel, J. E. (1993) Comparison of the relative toxicities of Shiga-like toxins type I and type II for mice. Infect. Immun. 61, 3392-3402
  7. A. D. (1987) Escherichia coli strains isolated from pigs with edema disease produce a variant of Shiga-like toxin II. FEMS Microbiol. Lett. 44, 33-38 https://doi.org/10.1111/j.1574-6968.1987.tb02237.x
  8. Jacewicz, M., Clausen, H., Nudelman, E., Donohue-Rolfe, A. and Keusch, G.T. (1986) Pathogenesis of shigella diarrhea. XI. Isolation of a shigella toxin- binding glycolipid from rabbit jejunum and HeLa cells and its identification as globotriaosylceramide. J. Exp. Med. 163, 1391- 1404 https://doi.org/10.1084/jem.163.6.1391
  9. O'Brien, A. D. and Holmes, R. K. (1987) Shiga and Shigalike toxins. Microbiol. Rev. 51, 206-220
  10. Tesh, V.L. and O'Brien, A.D. (1991) The pathogenic mechanisms of Shiga Toxin and the Shiga-like toxin. Mol. Microbiol. 5, 1817-1822 https://doi.org/10.1111/j.1365-2958.1991.tb00805.x
  11. Endo, Y., Tsurugi, K., Yutsudo, T., Takeda, Y., Ogasawara, T. and Igarashi, K. (1988) Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. Eur. J. Biochem. 171, 45-50 https://doi.org/10.1111/j.1432-1033.1988.tb13756.x
  12. Obrig, T. G., Moran, T. P. and Brown. J. E. (1987) The mode of action of Shiga toxin on peptide elongation of eukaryotic protein synthesis. Biochem. J. 244, 287-294 https://doi.org/10.1042/bj2440287
  13. Lingwood, C. A., Law, H., Richardson, S., Petric, M., Brunton, J. L., De Grandis, S. and Karmali, M. (1987) Glycolipid binding of purified and recombinant Escherichia coli produced verotoxin in vitro. J. Biol. Chem. 262, 8834- 8839
  14. Lingwood, C. A. (1996) Role of verotoxin receptors in pathogenesis. Trends. Microbiol. 4, 147-153 https://doi.org/10.1016/0966-842X(96)10017-2
  15. Waddell, T., Head, S., Petric, M., Cohen, A. and Lingwood, C. (1988) Globotriosyl ceramide is specifically recognized by the Escherichia coli verocytotoxin 2. Biochem. Biophys. Res. Commun. 152, 674-679 https://doi.org/10.1016/S0006-291X(88)80091-3
  16. DeGrandis, S., Law, H., Brunton, J., Gyles, C. and Lingwood, C. (1989) Globotetraosylceramide is recognized by the pig edema disease toxin. J. Biol. Chem. 264, 12520- 12525
  17. Samuel, J. E., Perera, L. P., Ward, S., O'Brien, A. D., Ginsburg, V. and Krivan, H.C. (1990) Comparison of the glycolipid receptor specificities of Shiga-like toxin type II and Shiga-like toxin type II variants. Infect. Immun. 58, 611-618
  18. Ostroff, S. M., Tarr, P. I., Neill, M. A., Lewis, J. H., Hargrett- Bean, N. and Kobayashi, J.M. (1989) Toxin genotypes and plasmid profiles as determinants of systemic sequelae in Escherichia coli O157:H7 infections. J. Infect. Dis. 160, 994-998 https://doi.org/10.1093/infdis/160.6.994
  19. Okuda, T., Tokuda, N., Numata, S., Ito, M., Ohta, M., Kawamura, K., Wiels, J., Urano, T., Tajima, O., Fukukawa, K. and Furukawa, K. (2006) Targeted disruption of Gb3/ CD77 synthase gene resulted in the complete deletion of globo-series gycosphingolipids and loss of sensitivity to verotoxins. J. Biol. Chem. 281, 10230-10235 https://doi.org/10.1074/jbc.M600057200
  20. Fujii, J., Matsui, T., Heatherly, D. P., Schlegel, K. H., Lobo, P. I., Yutsudo, T., Ciraolo, G. M., Morris, R. E. and Obrig, T. (2003) Rapid apoptosis induced by Shiga toxin in HeLa cells. Infect. Immun. 71, 2724-2735 https://doi.org/10.1128/IAI.71.5.2724-2735.2003
  21. Jacewicz, M., Feldman, H. A., Donohue-Rolfe, A., Balasubramanian, K. A. and Keusch, G. T. (1989) Pathogenesis of Shigella diarrhea. XIV. Analysis of Shiga toxin receptor on cloned HeLa cells. J. Infect. Dis. 159, 881-889 https://doi.org/10.1093/infdis/159.5.881
  22. Sekino, T., Kiyokawa, N., Taguchi, T., Takenouchi, H., Matsui, J., Tang, W.R., Suzuki, T., Nakajima, H., Saito, M., Ohmi, K., Katagiri, Y.U., Okita, H., Nakao, H., Takeda, T. and Fujimoto, J. (2004) Characterization of a Shiga-toxin 1 resistant stock of vero cells. Microbiol. Immunol. 48, 377-387 https://doi.org/10.1111/j.1348-0421.2004.tb03527.x
  23. Kiarach, A., Boyd, B. and Lingwood, C.A. (1994) Glycosphingolipid receptor function is modified by fatty acid content. Verotoxin 1 and Verotoxin 2c preferentially recognize different globotriaosyl ceramide fatty acid homologues. J. Biol. Chem. 269, 11138-11146
  24. Carpenter, G. (2000) The EGF receptor: a nexus for trafficking and signaling. Bioessays 22, 697-707 https://doi.org/10.1002/1521-1878(200008)22:8<697::AID-BIES3>3.0.CO;2-1
  25. McPherson, P. S., Kay, B. K. and Hussain, N. K. (2001) Signaling on the endocytic pathway. Traffic. 2, 375-384 https://doi.org/10.1034/j.1600-0854.2001.002006375.x
  26. Pralle, A., Keller, P., Florin, E. L., Simons, K. and Horber, J. K. (2000) Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997-1008 https://doi.org/10.1083/jcb.148.5.997
  27. Pudymaitis, A., Armstrong, G.. and Lingwood, C. A. (1991) Verotoxin-resistant cell clones are deficient in the glycolipid globotriaosylceramide: differential basis of phenotype. Arch. Biochem. Biophys. 286, 448-452 https://doi.org/10.1016/0003-9861(91)90064-P
  28. Kongmuang, U., Honda, T. and Miwatani, T. (1998) Isolation of Shiga toxin-resistant Vero cells and their use for easy identification of the toxin. Infect. Immun. 56, 2491-2494
  29. Ashkenazi, A. and V. M. (1998) Dixit. Death receptors: signaling and modulation. Scinece 281, 1305-1308 https://doi.org/10.1126/science.281.5381.1305
  30. Stricklett, P. K., Hughes, A. K., Ergonul, Z. and Kohan D. E. (2002) Molecular basis for up-regulation by inflammatory cytokines of Shiga toxin 1 cytotoxicity and globotriaosylceramide expression. J. Infect. Dis. 186, 976-982 https://doi.org/10.1086/344053
  31. Folch, J., Lees, M., and Sloane-Stanley, G. H. (1957) A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497-509
  32. Shin, I. S, Nishikawa, K., Maruyama, H. and Ishii, S. (2006) Histidine-tagged Shiga toxin B subunit binding assay: simple and specific determination of Gb3 content in mammalian cells. Chem. Pharm. Bull. 54, 522-527 https://doi.org/10.1248/cpb.54.522

Cited by

  1. Dietary choice affects Shiga toxin-producingEscherichia coli(STEC) O157:H7 colonization and disease vol.110, pp.23, 2013, https://doi.org/10.1073/pnas.1222014110
  2. Manganese Blocks Intracellular Trafficking of Shiga Toxin and Protects Against Shiga Toxicosis vol.335, pp.6066, 2012, https://doi.org/10.1126/science.1215930
  3. Shiga Toxin Binding to Glycolipids and Glycans vol.7, pp.2, 2012, https://doi.org/10.1371/journal.pone.0030368
  4. Commensal E. coli Stx2 lysogens produce high levels of phages after spontaneous prophage induction vol.5, 2015, https://doi.org/10.3389/fcimb.2015.00005
  5. Multivalent dendrimeric compounds containing carbohydrates expressed on immune cells inhibit infection by primary isolates of HIV-1 vol.408, pp.1, 2010, https://doi.org/10.1016/j.virol.2010.09.004
  6. Verotoxin-1 Treatment or Manipulation of its Receptor Globotriaosylceramide (Gb3) for Reversal of Multidrug Resistance to Cancer Chemotherapy vol.2, pp.10, 2010, https://doi.org/10.3390/toxins2102467
  7. P1PK, GLOB, and FORS Blood Group Systems and GLOB Collection: Biochemical and Clinical Aspects. Do We Understand It All Yet? vol.28, pp.3, 2014, https://doi.org/10.1016/j.tmrv.2014.04.007
  8. Acquired Resistance to Shiga Toxin-Induced Apoptosis by Loss of CD77 Expression in Human Myelogenous Leukemia Cell Line, THP-1 vol.41, pp.9, 2018, https://doi.org/10.1248/bpb.b18-00277