DOI QR코드

DOI QR Code

Basic Fibroblast Growth Factor Increases Intracellular Magnesium Concentration through the Specific Signaling Pathways

  • Hong, Bing-Zhe (Department of Pharmacology, Chonbuk National University Medical School) ;
  • Park, Sun-Ah (Department of Pharmacology, Chonbuk National University Medical School) ;
  • Kim, Han-Na (Department of Pharmacology, Chonbuk National University Medical School) ;
  • Ma, Tian-Ze (Department of Pharmacology, Chonbuk National University Medical School) ;
  • Kim, Han-Gyu (Department of Pharmacology, Chonbuk National University Medical School) ;
  • Kang, Hyung-Sub (Department of Pharmacology, Chonbuk National University College of Veterinary Medicine) ;
  • Kim, Hwan-Gyu (Division of Biological Sciences, Chonbuk National University) ;
  • Kwak, Yong-Geun (Department of Pharmacology, Chonbuk National University Medical School)
  • 투고 : 2009.04.01
  • 심사 : 2009.06.08
  • 발행 : 2009.07.31

초록

Basic fibroblast growth factor (bFGF) plays an important role in angiogenesis. However, the underlying mechanisms are not clear. $Mg^{2+}$ is the most abundant intracellular divalent cation in the body and plays critical roles in many cell functions. We investigated the effect of bFGF on the intracellular $Mg^{2+}$ concentration ($[Mg^{2+}]_i$) in human umbilical vein endothelial cells (HUVECs). bFGF increased ($[Mg^{2+}]_i$) in a dose-dependent manner, independent of extracellular $Mg^{2+}$. This bFGF-induced $[Mg^{2+}]_i$ increase was blocked by tyrosine kinase inhibitors (tyrphostin A-23 and genistein), phosphatidylinositol 3-kinase (PI3K) inhibitors (wortmannin and LY294002) and a phospholipase $C{\gamma}$ ($PLC{\gamma}$) inhibitor (U73122). In contrast, mitogen-activated protein kinase inhibitors (SB202190 and PD98059) did not affect the bFGF-induced $[Mg^{2+}]_i$ increase. These results suggest that bFGF increases the $[Mg^{2+}]_i$ from the intracellular $Mg^{2+}$ stores through the tyrosine kinase/PI3K/$PLC{\gamma}$-dependent signaling pathways.

키워드

과제정보

연구 과제 주관 기관 : Korea Research Foundation

참고문헌

  1. Bussolino, F., Mantovani, A., and Persico, G. (1997). Molecular mechanisms of blood vessel formation. Trends Biochem. Sci. 22, 251-256 https://doi.org/10.1016/S0968-0004(97)01074-8
  2. Cines, D.B., Pollak, E.S., Buck, C.A., Loscalzo, J., Zimmerman, G.A., McEver, R.P., Pober, J.S., Wick, T.M., Konkle, B.A., Schwartz, B.S., et al. (1998). Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91, 3527-3561
  3. Folkman, J., and Shing, Y. (1992). Angiogenesis. J. Biol. Chem. 267, 10931-10934
  4. Giavazzi, R., Giuliani, R., Coltrini, D., Bani, M.R., Ferri, C., Sennino, B., Tosatti, M.P., Stoppacciaro, A., and Presta, M. (2001). Modulation of tumor angiogenesis by conditional expression of fibroblast growth factor-2 affects early but not established tumors. Cancer Res. 61, 309-317
  5. Gunther, T. (1986). Functional compartmentation of intracellular magnesium. Magnesium 5, 53-59
  6. Hackett, S.F., Friedman, Z., and Campochiaro, P.A. (1987). Cyclic 3',5'-adenosine monophosphate modulates vascular endothelial cell migration in vitro. Cell Biol. Int. Rep. 11, 279-287 https://doi.org/10.1016/0309-1651(87)90089-0
  7. Hong, B.Z., Kang, H.S., So, J.N., Kim, H.N., Park, S.A., Kim, S.J., Kim, K.R., and Kwak, Y.G. (2006). Vascular endothelial growth factor increases the intracellular magnesium. Biochem. Biophys. Res. Commun. 347, 496-501 https://doi.org/10.1016/j.bbrc.2006.06.125
  8. Ishijima, S., and Tatibana, M. (1994). Rapid mobilization of intracellular $Mg^{$^{2+}$}$ by bombesin in Swiss 3T3 cells: mobilization through external Ca($^{2+}$)- and tyrosine kinase-dependent mechanisms. J. Biochem. 115, 730-737
  9. Kim, S.J., Kang, H.S., Kang, M.S., Yu, X., Park, S.Y., Kim, I.S., Kim, N.S., Kim, S.Z., Kwak, Y.G., and Kim, J.S. (2005). alpha(1)-Agonists-induced Mg($^{2+}$) efflux is related to MAP kinase activation in the heart. Biochem. Biophys. Res. Commun. 333, 1132-1138 https://doi.org/10.1016/j.bbrc.2005.06.022
  10. Klint, P., and Claesson-Welsh, L. (1999). Signal transduction by fibroblast growth factor receptors. Front Biosci. 4, D165-177 https://doi.org/10.2741/Klint
  11. Kurosawa, M., Ishizuka, T., and Shimizu, Y. (1993). Formation of phosphatidylinositol-4-phosphate in human peripheral blood eosinophils. Clin. Exp. Allergy 23, 770-776 https://doi.org/10.1111/j.1365-2222.1993.tb00365.x
  12. Laham, R.J., Chronos, N.A., Pike, M., Leimbach, M.E., Udelson, J.E., Pearlman, J.D., Pettigrew, R.I., Whitehouse, M.J., Yoshizawa, C., and Simons, M. (2000). Intracoronary basic fibroblast growth factor (FGF-2) in patients with severe ischemic heart disease: results of a phase I open-label dose escalation study. J. Am. Coll. Cardiol. 36, 2132-2139 https://doi.org/10.1016/S0735-1097(00)00988-8
  13. Lapidos, K.A., Woodhouse, E.C., Kohn, E.C., and Masiero, L. (2001). Mg(++)-induced endothelial cell migration: substratum selectivity and receptor-involvement. Angiogenesis 4, 21-28 https://doi.org/10.1023/A:1016619414817
  14. Lazarous, D.F., Unger, E.F., Epstein, S.E., Stine, A., Arevalo, J.L., Chew, E.Y., and Quyyumi, A.A. (2000). Basic fibroblast growth factor in patients with intermittent claudication: results of a phase I trial. J. Am. Coll. Cardiol. 36, 1239-1244 https://doi.org/10.1016/S0735-1097(00)00882-2
  15. Liao, F., Folsom, A.R., and Brancati, F.L. (1998). Is low magnesium concentration a risk factor for coronary heart disease? The Atherosclerosis Risk in Communities (ARIC) Study. Am. Heart J. 136, 480-490 https://doi.org/10.1016/S0002-8703(98)70224-8
  16. Maier, J.A., Bernardini, D., Rayssiguier, Y., and Mazur, A. (2004a). High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro. Biochim. Biophys. Acta 1689, 6-12 https://doi.org/10.1016/j.bbadis.2004.02.004
  17. Maier, J.A., Malpuech-Brugere, C., Zimowska, W., Rayssiguier, Y., and Mazur, A. (2004b). Low magnesium promotes endothelial cell dysfunction: implications for atherosclerosis, inflammation and thrombosis. Biochim. Biophys. Acta 1689, 13-21 https://doi.org/10.1016/j.bbadis.2004.01.002
  18. Mussoni, L., Sironi, L., Tedeschi, L., Calvio, A.M., Colli, S., and Tremoli, E. (2001). Magnesium inhibits arterial thrombi after vascular injury in rat: in vivo impairment of coagulation. Thromb. Haemost. 86, 1292-1295
  19. Ornitz, D.M., and Itoh, N. (2001). Fibroblast growth factors. Genome Biol. 2, REVIEWS3005
  20. Peacock, J.M., Folsom, A.R., Arnett, D.K., Eckfeldt, J.H., and Szklo, M. (1999). Relationship of serum and dietary magnesium to incident hypertension: the atherosclerosis risk in communities (ARIC) study. Ann. Epidemiol. 9, 159-165 https://doi.org/10.1016/S1047-2797(98)00040-4
  21. Powers, C.J., McLeskey, S.W., and Wellstein, A. (2000). Fibroblast growth factors, their receptors and signaling. Endocr. Relat. Cancer 7, 165-197 https://doi.org/10.1677/erc.0.0070165
  22. Quamme, G.A., and Rabkin, S.W. (1990). Cytosolic free magnesium in cardiac myocytes: identification of a $Mg^{$^{2+}$}$ influx pathway. Biochem. Biophys. Res. Commun. 167, 1406-1412
  23. Raju, B., Murphy, E., Levy, L.A., Hall, R.D., and London, R.E. (1989). A fluorescent indicator for measuring cytosolic free magnesium. Am. J. Physiol. 256, C540-548
  24. Romani, A.M., and Scarpa, A. (2000). Regulation of cellular magnesium. Front Biosci. 5, D720-734
  25. Romani, A., Marfella, C., and Scarpa, A. (1992). Regulation of $Mg^{2+}$ uptake in isolated rat myocytes and hepatocytes by protein kinase C. FEBS Lett. 296, 135-140 https://doi.org/10.1016/0014-5793(92)80364-M
  26. Romani, A., Marfella, C., and Scarpa, A. (1993). Cell magnesium transport and homeostasis: role of intracellular compartments. Miner. Electrolyte Metab. 19, 282-289
  27. Scarpa, A., and Brinley, F.J. (1981). In situ measurements of free cytosolic magnesium ions. Fed. Proc. 40, 2646-2652
  28. Schlessinger, J. (2000). Cell signaling by receptor tyrosine kinases. Cell 103, 211-225 https://doi.org/10.1016/S0092-8674(00)00114-8
  29. Schweigel, M., Park, H.S., Etschmann, B., and Martens, H. (2006). Characterization of the Na+-dependent $Mg^{$^{2+}$}$ transport in sheep ruminal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G56-65 https://doi.org/10.1152/ajpgi.00014.2005
  30. Shi, B., Heavner, J.E., Boylan, L.M., Wang, M.J., and Spallholz, J.E. (1995). Dietary magnesium deficiency increases Gi alpha levels in the rat heart after myocardial infarction. Cardiovasc. Res. 30, 923-929
  31. Tashiro, M., Tursun, P., and Konishi, M. (2005). Intracellular and extracellular concentrations of Na+ modulate $Mg^{$^{2+}$}$ transport in rat ventricular myocytes. Biophys. J. 89, 3235-3247 https://doi.org/10.1529/biophysj.105.068890
  32. Watanabe, J., Nakayama, S., Matsubara, T., and Hotta, N. (1998). Regulation of intracellular free $Mg^{2+}$ concentration in isolated rat hearts via beta-adrenergic and muscarinic receptors. J. Mol. Cell Cardiol. 30, 2307-2318 https://doi.org/10.1006/jmcc.1998.0791
  33. Webber, C.A., Chen, Y.Y., Hehr, C. L., Johnston, J., and McFarlane, S. (2005). Multiple signaling pathways regulate FGF-2-induced retinal ganglion cell neurite extension and growth cone guidance. Mol. Cell. Neurosci. 30, 37-47 https://doi.org/10.1016/j.mcn.2005.05.005
  34. Wolf, F.I., and Cittadini, A. (1999). Magne sium in cell proliferation and differentiation. Front Biosci. 4, D607-617 https://doi.org/10.2741/Wolf
  35. Wolf, F.I., and Cittadini, A. (2003). Chemistry and biochemistry of magnesium. Mol. Aspects Med. 24, 3-9 https://doi.org/10.1016/S0098-2997(02)00087-0
  36. Wolf, F.I., Torsello, A., Fasanella, S., and Cittadini, A. (2003). Cell physiology of magnesium. Mol. Aspects Med. 24, 11-26 https://doi.org/10.1016/S0098-2997(02)00088-2
  37. Zhang, G.H., and Melvin, J.E. (1996). Na+-dependent release of $Mg^{$^{2+}$}$ from an intracellular pool in rat sublingual mucous acini. J. Biol. Chem. 271, 29067-29072 https://doi.org/10.1074/jbc.271.46.29067

피인용 문헌

  1. Multiple pathways from three types of sugar receptor sites to metabotropic transduction pathways of the blowfly: Study by the whole cell-clamp experiments vol.160, pp.1, 2009, https://doi.org/10.1016/j.cbpa.2011.05.010
  2. Actin Filament Attachments for Sustained Motility In Vitro Are Maintained by Filament Bundling vol.7, pp.2, 2012, https://doi.org/10.1371/journal.pone.0031385
  3. Silencing TRPM7 mimics the effects of magnesium deficiency in human microvascular endothelial cells vol.15, pp.1, 2009, https://doi.org/10.1007/s10456-011-9242-0
  4. The Proinflammatory Cytokine, IL-6, and its Interference with bFGF Signaling and PSMA in Prostate Cancer Cells vol.36, pp.3, 2009, https://doi.org/10.1007/s10753-012-9586-7
  5. Magnesium in Man: Implications for Health and Disease vol.95, pp.1, 2009, https://doi.org/10.1152/physrev.00012.2014