DOI QR코드

DOI QR Code

Pathogen Inducible Voltage-Dependent Anion Channel (AtVDAC) Isoforms Are Localized to Mitochondria Membrane in Arabidopsis

  • Lee, Sang Min (Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Hoang, My Hanh Thi (Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Han, Hay Ju (Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Kim, Ho Soo (Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Lee, Kyunghee (Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Kim, Kyung Eun (Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Kim, Doh Hoon (Faculty of Plant Biotechnology, Dona-A University) ;
  • Lee, Sang Yeol (Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Chung, Woo Sik (Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
  • Received : 2008.10.06
  • Accepted : 2008.12.18
  • Published : 2009.03.31

Abstract

Voltage-dependent anion channels (VDACs) are reported to be porin-type, ${\beta}$-barrel diffusion pores. They are prominently localized in the outer mitochondrial membrane and are involved in metabolite exchange between the organelle and the cytosol. In this study, we have investigated a family of VDAC isoforms in Arabidopsis thaliana (AtVDAC). We have shown that the heterologous expression of AtVDAC proteins can functionally complement a yeast mutant lacking the endogenous mitochondrial VDAC gene. AtVDACs tagged with GFP were localized to mitochondria in both yeast and plant cells. We also looked at the response of AtVDACs to biotic and abiotic stresses and found that four AtVDAC transcripts were rapidly up-regulated in response to a bacterial pathogen.

Keywords

Acknowledgement

Supported by : Environmental Biotechnology National Core Research Center, Ministry of Education, Science and Technology, Rural Development Administration, Ministry of Education, Science and Technology in Korea

References

  1. Al Bitar, F., Roosens, N., Smeyers, M., Vauterin, M., Van Boxtel, J., Jacobs, M., and Homble, F. (2003). Sequence analysis, transcriptional and posttranscriptional regulation of the rice VDAC family. Biochim. Biophys. Acta 1625, 43-51 https://doi.org/10.1016/S0167-4781(02)00590-0
  2. Bayrhuber, M., Meins, T., Habeck, M., Becker, S., Giller, K., Villinger, S., Vonrhein, C., Griesinger, C., Zweckstetter, M., and Zeth, K. (2008). Structure of the human voltage-dependent anion channel. Proc. Natl. Acad. Sci. USA 105, 15370-15375 https://doi.org/10.1073/pnas.0808115105
  3. Blachly-Dyson, E., and Forte, M. (2001). VDAC channels. IUBMB Life 52, 113-118 https://doi.org/10.1080/15216540152845902
  4. Clausen, C., Ilkavets, I., Thomson, R., Philippar, K., Vojta, A., Mohlmann, T., Neuhaus, E., Fulgosi, H., and Soll, J. (2004). Intracellular localization of VDAC proteins in plants. Planta 220, 30-37 https://doi.org/10.1007/s00425-004-1325-3
  5. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743 https://doi.org/10.1046/j.1365-313x.1998.00343.x
  6. Desai, M.K., Mishra, R.N., Verma, D., Nair, S., Sopory, S.K., and Reddy, M.K. (2006). Structural and functional analysis of a salt stress inducible gene encoding voltage dependent anion channel (VDAC) from pearl millet (Pennisetum glaucum). Plant Physiol. Biochem. 44, 483-493 https://doi.org/10.1016/j.plaphy.2006.08.008
  7. Dickman, M.B., Park, Y.K., Oltersdorf, T., Li, W., Clemente, T., and French, R. (2001). Abrogation of disease development in plants expressing animal anti-apoptotic genes. Proc. Natl. Acad. Sci. USA 98, 6957-6962 https://doi.org/10.1073/pnas.091108998
  8. Elkeles, A., Devos, K.M., Graur, D., Zizi, M., and Breiman, A. (1995). Multiple cDNAs of wheat voltage-dependent anion channels (VDAC): isolation, differential expression, mapping and evolution. Plant Mol. Biol. 29, 109-124 https://doi.org/10.1007/BF00019123
  9. Geiger, T.R., Keith, C.S., Muszynski, M.G., and Newton, K.J. (1999). Sequences of three maize cDNAs encoding mitochondrial voltage-dependent anion channel (VDAC) proteins. Plant Physiol. 121, 686
  10. Gilchrist, D.G. (1998). Programmed cell death in plant disease: the purpose and promise of cellular suicide. Annu. Rev. Phytopathol. 36, 393-414 https://doi.org/10.1146/annurev.phyto.36.1.393
  11. Godbole, A., Varghese, J., Sarin, A., and Mathew, M.K. (2003). VDAC is a conserved element of death pathways in plant and animal systems. Biochim. Biophys. Acta 1642, 87-96 https://doi.org/10.1016/S0167-4889(03)00102-2
  12. Hofius, D., Tsitsigiannis, D.I., Jones, J.D., and Mundy, J. (2007). Inducible cell death in plant immunity. Semin. Cancer Biol. 17, 166-187 https://doi.org/10.1016/j.semcancer.2006.12.001
  13. Hong, B., Ichida, A., Wang, Y., Genes, J.S., Pickard, B.G., and Harper, J.F. (1999). Identification of a calmodulin-regulated $Ca^{2+}$-ATPase in the endoplasmic reticulum. Plant Physiol. 119, 1165-1175 https://doi.org/10.1104/pp.119.4.1165
  14. Jin, J.B., Bae, H., Kim, S.J., Jin, Y.H., Goh, C.H., Kim, D.H., Lee, Y.J., Tse, Y.C., Jiang, L., and Hwang, I. (2003). The Arabidopsis dynamin-like proteins ADL1C and ADL1E play a critical role in mitochondrial morphogenesis. Plant Cell 15, 2357-2369 https://doi.org/10.1105/tpc.015222
  15. Kim, K.C., Fan, B., and Chen, Z. (2006). Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Plant Physiol. 142, 1180-1192 https://doi.org/10.1104/pp.106.082487
  16. Kleene, R., Pfanner, N., Pfaller, R., Link, T.A., Sebald, W., Neupert, W., and Tropschung, M. (1987). Mitochondrial porin of Neurospora crassa: cDNA cloning, in vitro expression and import into mitochondria. EMBO J. 6, 2627-2633
  17. Lacomme, C., and Roby, D. (1999). Identification of new early markers of the hypersensitive response in Arabidopsis thaliana(1). FEBS Lett. 459, 149-153 https://doi.org/10.1016/S0014-5793(99)01233-8
  18. Lacomme, C., and Santa Cruz, S. (1999). Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc. Natl. Acad. Sci. USA 96, 7956-7961 https://doi.org/10.1073/pnas.96.14.7956
  19. Lee, H.C., and Wei, Y.H. (2007). Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp. Biol. Med. 232, 592-606
  20. Lee, A.C., Xu, X., Blachly-Dyson, E., Forte, M., and Colombini, M. (1998). The role of yeast VDAC genes on the permeability of the mitochondrial outer membrane. J. Membr. Biol. 161, 173-181 https://doi.org/10.1007/s002329900324
  21. Lee, Y.J., Kim, D.H., Kim, Y.W., and Hwang, I. (2001). Identification of a signal that distinguishes between the chloroplast outer envelope membrane and the endomembrane system in vivo. Plant Cell 13, 2175-2190 https://doi.org/10.1105/tpc.13.10.2175
  22. Lee, S.M, Kim, H.S., Han, H.J., Moon, B.C., Kim, C.Y., Harper, J.F., and Chung, W.S. (2007). Identification of a calmodulin-regulated autoinhibited $Ca^{2+}$-ATPase (ACA11) that is localized to vacuole membranes in Arabidopsis. FEBS Lett. 581, 3943-3949 https://doi.org/10.1016/j.febslet.2007.07.023
  23. Martinou, R.D. (2001). Green, breaking the mitochondrial barrier. Nat. Rev. 2, 63-67 https://doi.org/10.1038/35048069
  24. Na, K.S., Park, B.C., Jang, M., Cho, S., Lee, D.H., Kang, S., Lee, C.K., Bae, K.H., and Park, S.G. (2007). Protein disulfide isomerase is cleaved by caspase-3 and -7 during apoptosis. Mol. Cells 24, 261-267
  25. Park, C.Y., Heo, W.D, Yoo, J.H., Lee, J.H., Kim, M.C., Chun, H.J., Moon, B.C., Kim, I.H., Park, H.C., Choi, M.S., et al. (2004). Pathogenesis-related gene expression by specific calmodulin isoforms is dependent on NIM1, a key regulator of systemic acquired resistance. Mol. Cells 18, 207-213
  26. Reumann, S., Bettermann, M., and Heldt, H.W. (1997). Evidence for the presence of a porin in the membrane of glyoxysomes of castor bean. Plant Physiol. 115, 891-899 https://doi.org/10.1104/pp.115.3.891
  27. Rostovtseva, T.K., and Bezrukov, S.M. (1998). ATP transport through a single mitochondrial channel, VDAC, studied by current fluctuation analysis. Biophys. J. 74, 2365-2373 https://doi.org/10.1016/S0006-3495(98)77945-7
  28. Rostovtseva, T.K., Antonsson, B., Suzuki, M., Youle, R.J., Colombini, M., and Bezrukov, S.M. (2004). Bid, but not Bax, regulates VDAC channels. J. Biol. Chem. 279, 13575-13583 https://doi.org/10.1074/jbc.M310593200
  29. Rostovtseva, T.K., Tan, W., and Colombini, M. (2005) On the role of VDAC in apoptosis: fact and fiction. J. Bioenerg. Biomembr. 37, 129-142 https://doi.org/10.1007/s10863-005-6566-8
  30. Salinas, T., Duchene, A.M., Delage, L., Nilsson, S., Glaser, E., Zaepfel, M., and Marechal-Drouard, L. (2006). The voltagedependent anion channel, a major component of the tRNA import machinery in plant mitochondria. Pro. Natl. Acad. Sci. USA 103, 18362-18367 https://doi.org/10.1073/pnas.0606449103
  31. Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., et al. (2002). Monitoring the expression profiles of 7000 Aravidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31, 279-292 https://doi.org/10.1046/j.1365-313X.2002.01359.x
  32. Shimizu, S., Konishi, A., Kodama, T., and Tsujimoto, Y. (2000) BH4 domain of antiapoptotic Bcl-2 family members closes voltagedependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc. Natl. Acad. Sci. USA 97, 3100- 3105 https://doi.org/10.1073/pnas.97.7.3100
  33. Swidzinski, J.A., Leaver, C.J., and Sweetlove, L.J. (2004). A proteomic analysis of plant programmed cell death. Phytochemistry 65, 1829-1838 https://doi.org/10.1016/j.phytochem.2004.04.020
  34. Vander Heiden, M.G., Li, X.X., Gottleib, E., Hill, R.B., Thompson, C.B., and Colombini, M. (2001). Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane. J. Biol. Chem. 276, 19414-19419 https://doi.org/10.1074/jbc.M101590200
  35. Wandrey, M., Trevaskis, B., Brewin, N., and Udvardi, M.K. (2004). Molecular and cell biology of a family of voltage-dependent anion channel porins in Lotus japonicas. Plant Physiol. 134, 1-12 https://doi.org/10.1104/pp.103.031484
  36. Young, M.J., Bay, D.C., Hausner, G., and Court, D.A. (2007). The evolutionary history of mitochondrial porins. BMC Evol. Biol. 28, 7-31 https://doi.org/10.1186/1471-2148-7-31
  37. Zalk, R., Israelson, A., Garty, E.S., Azoulay-Zohar, H., and Schoshan-Barmatz, V. (2005). Oligomeric states of the voltagedependent anion channel and cytochrome c release from mitochondria. Biochem. J. 15, 73-83 https://doi.org/10.1042/BJ20041356
  38. Zamzami, Z., and Kroemer, G. (2001). The mitochondrion in apoptosis: how Pandora's box opens. Nat. Rev. 2, 67-71 https://doi.org/10.1038/35048073

Cited by

  1. AtObgC, a plant ortholog of bacterial Obg, is a chloroplast-targeting GTPase essential for early embryogenesis vol.71, pp.4, 2009, https://doi.org/10.1007/s11103-009-9529-3
  2. The Ca 2+ -dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis vol.63, pp.3, 2009, https://doi.org/10.1111/j.1365-313x.2010.04257.x
  3. Porins in prokaryotes and eukaryotes: common themes and variations vol.431, pp.1, 2009, https://doi.org/10.1042/bj20100371
  4. Wheat Mitochondrial Proteomes Provide New Links between Antioxidant Defense and Plant Salinity Tolerance vol.9, pp.12, 2009, https://doi.org/10.1021/pr1007834
  5. Molecular and genetic characterization of the gene family encoding the voltage-dependent anion channel in Arabidopsis vol.62, pp.14, 2011, https://doi.org/10.1093/jxb/err113
  6. Multiple Lines of Evidence Localize Signaling, Morphology, and Lipid Biosynthesis Machinery to the Mitochondrial Outer Membrane of Arabidopsis vol.157, pp.3, 2009, https://doi.org/10.1104/pp.111.183160
  7. Bacterial Expression, Purification and Characterization of a Rice Voltage-Dependent, Anion-Selective Channel Isoform, OsVDAC4 vol.244, pp.2, 2011, https://doi.org/10.1007/s00232-011-9399-x
  8. Voltage-dependent-anion-channels (VDACs) in Arabidopsis have a dual localization in the cell but show a distinct role in mitochondria vol.78, pp.4, 2009, https://doi.org/10.1007/s11103-012-9874-5
  9. Plant VDAC: Facts and speculations vol.1818, pp.6, 2009, https://doi.org/10.1016/j.bbamem.2011.11.028
  10. Mitochondrial Energy and Redox Signaling in Plants vol.18, pp.16, 2013, https://doi.org/10.1089/ars.2012.5104
  11. The Voltage-Dependent Anion Channel 1 (AtVDAC1) Negatively Regulates Plant Cold Responses during Germination and Seedling Development in Arabidopsis and Interacts with Calcium Sensor CBL1 vol.14, pp.1, 2009, https://doi.org/10.3390/ijms14010701
  12. The functions of voltage-dependent anion channels in plants vol.18, pp.8, 2013, https://doi.org/10.1007/s10495-013-0845-3
  13. Differential targeting of VDAC3 mRNA isoforms influences mitochondria morphology vol.111, pp.24, 2014, https://doi.org/10.1073/pnas.1402588111
  14. Arabidopsis Voltage-Dependent Anion Channel 1 (AtVDAC1) Is Required for Female Development and Maintenance of Mitochondrial Functions Related to Energy-Transaction vol.9, pp.9, 2009, https://doi.org/10.1371/journal.pone.0106941
  15. Arabidopsis mitochondrial voltage-dependent anion channel 3 (AtVDAC3) protein interacts with thioredoxin m2 vol.589, pp.11, 2015, https://doi.org/10.1016/j.febslet.2015.03.034
  16. A highly efficient grapevine mesophyll protoplast system for transient gene expression and the study of disease resistance proteins vol.125, pp.1, 2009, https://doi.org/10.1007/s11240-015-0928-7
  17. Comparative proteomic study of Arabidopsis mutants mpk4 and mpk6 vol.6, pp.None, 2009, https://doi.org/10.1038/srep28306
  18. Comprehensive Mitochondrial Metabolic Shift during the Critical Node of Seed Ageing in Rice vol.11, pp.4, 2009, https://doi.org/10.1371/journal.pone.0148013
  19. Characterization of a novel β-barrel protein (AtOM47) from the mitochondrial outer membrane of Arabidopsis thaliana vol.67, pp.21, 2009, https://doi.org/10.1093/jxb/erw366
  20. Insights into the Response of Soybean Mitochondrial Proteins to Various Sizes of Aluminum Oxide Nanoparticles under Flooding Stress vol.15, pp.12, 2016, https://doi.org/10.1021/acs.jproteome.6b00572
  21. Genetic architecture of plant stress resistance: multi‐trait genome‐wide association mapping vol.213, pp.3, 2009, https://doi.org/10.1111/nph.14220
  22. Grapevine Vp PR 10.1 functions in resistance to Plasmopara viticola through triggering a cell death‐like defence response by interacting with Vp VDAC 3 vol.16, pp.8, 2009, https://doi.org/10.1111/pbi.12891
  23. Grapevine Vp PR 10.1 functions in resistance to Plasmopara viticola through triggering a cell death‐like defence response by interacting with Vp VDAC 3 vol.16, pp.8, 2009, https://doi.org/10.1111/pbi.12891
  24. The interaction between AtMT2b and AtVDAC3 affects the mitochondrial membrane potential and reactive oxygen species generation under NaCl stress in Arabidopsis vol.249, pp.2, 2009, https://doi.org/10.1007/s00425-018-3010-y
  25. Arabidopsis SCO Proteins Oppositely Influence Cytochrome c Oxidase Levels and Gene Expression during Salinity Stress vol.60, pp.12, 2009, https://doi.org/10.1093/pcp/pcz166
  26. Arabidopsis Mitochondrial Voltage-Dependent Anion Channels Are Involved in Maintaining Reactive Oxygen Species Homeostasis, Oxidative and Salt Stress Tolerance in Yeast vol.11, pp.None, 2020, https://doi.org/10.3389/fpls.2020.00050
  27. Arabidopsis Voltage-Dependent Anion Channels (VDACs): Overlapping and Specific Functions in Mitochondria vol.9, pp.4, 2020, https://doi.org/10.3390/cells9041023
  28. VDAC and its interacting partners in plant and animal systems: an overview vol.40, pp.5, 2009, https://doi.org/10.1080/07388551.2020.1756214
  29. VDACs: An Outlook on Biochemical Regulation and Function in Animal and Plant Systems vol.12, pp.None, 2009, https://doi.org/10.3389/fphys.2021.683920
  30. Redox-Sensitive VDAC: A Possible Function as an Environmental Stress Sensor Revealed by Bioinformatic Analysis vol.12, pp.None, 2009, https://doi.org/10.3389/fphys.2021.750627
  31. OsUEV1B, an Ubc enzyme variant protein, is required for phosphate homeostasis in rice vol.106, pp.3, 2021, https://doi.org/10.1111/tpj.15193
  32. VDAC1 Negatively Regulates Floral Transition in Arabidopsis thaliana vol.22, pp.21, 2009, https://doi.org/10.3390/ijms222111603
  33. CIPK9 targets VDAC3 and modulates oxidative stress responses in Arabidopsis vol.109, pp.1, 2009, https://doi.org/10.1111/tpj.15572